Influence of ball milling duration of quarry dust on the properties of nickel-quarry dust composite coating

  • I. S. Othman Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia, Phone: +6063316893; Fax: +6063316411
  • M. A. F. M. M. Azam Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia, Phone: +6063316893; Fax: +6063316411
  • M. F. A. Bakar Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia, Phone: +6063316893; Fax: +6063316411
  • M. S. Kasim Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia, Phone: +6063316893; Fax: +6063316411
  • T. A. Rahman Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia, Phone: +6063316893; Fax: +6063316411
  • M. R. Mohamad Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
Keywords: Nickel, quarry dust, composite coating, aluminum alloy 6061, wear, hardness

Abstract

The main purpose of this research is to investigate the effect of various ball milling duration on the surface morphology, hardness and wear properties of nickel- quarry dust (Ni-QD) composite coating on aluminium alloy 6061 (AA6061) substrate. Ni-QD composite coatings were deposited on zincated AA6061 substrate by using electrodeposition technique. The quarry dust particles were prepared by ball milling process at 5, 10, 15 and 20 hours. Later, the quarry dust particles were added to nickel citrate bath at 50 g/l for electrodeposition of Ni-QD composite coating. The electrodeposition process was carried out for 1 hour at 40º C, under the current density of 3 A/dm2. X-ray Fluorescence (XRF), X-ray Diffraction (XRD) and scanning electron microscope (SEM) analyses were carried out in order to investigate the influence of ball milling duration on the prepared quarry dust as well as the produced composite coating. In addition, microhardness and wear testing of Ni-QD composite coatings were also performed in this study. The microhardness values of the nickel composite coatings using ball milled quarry dust are higher than using crushed quarry dust. The microhardness values for all nickel composite coatings produced from crushed and ball milled quarry dust increases from 190.6 to 282.2. The increase in microhardness values is due to the high density of quarry dust in the electrolyte. The damage of the wear scar was improved, as the ball milling duration increases from 0 to 20 hours.

Published
2019-09-27
How to Cite
Othman, I. S., M. Azam, M. A. F. M., A. Bakar, M. F., Kasim, M. S., A. Rahman, T., & Mohamad, M. R. (2019). Influence of ball milling duration of quarry dust on the properties of nickel-quarry dust composite coating. Journal of Mechanical Engineering and Sciences, 13(3), 5441 - 5454. https://doi.org/10.15282/jmes.13.3.2019.15.0441