Single-agent Finite Impulse Response Optimizer vs Simulated Kalman Filter Optimizer


  • Tasiransurini Ab Rahman
  • Nor Azlina Ab. Aziz
  • Nor Hidayati Abdul Aziz



Optimization, SAFIRO, SKF


Single-agent Finite Impulse Response Optimizer (SAFIRO) is a new estimation-based optimization algorithm which mimics the work procedure of the ultimate unbiased finite impulse response (UFIR) filter. In a real UFIR filter, the horizon length, N, plays an important role to obtain the optimal estimation. In SAFIRO, N represents the repetition number of estimation part that needs to be done in find-ing an optimal solution. On the other hand, Simulated Kalman Filter (SKF) is also an estimation- based optimization algorithm inspired by the estimation capability of Kalman filtering. In literature, substantial amount of works has been devoted to SKF, both in applied research and fundamental enhancements. Thus, in this paper, a performance comparison of both SAFIRO and SKF is presented. It is found that the SAFIRO outperforms the SKF significantly.




How to Cite

T. Ab Rahman, N. A. Ab. Aziz, and N. H. Abdul Aziz, “Single-agent Finite Impulse Response Optimizer vs Simulated Kalman Filter Optimizer”, Mekatronika: J. Intell. Manuf. Mechatron., vol. 1, no. 2, pp. 15–22, Jul. 2019.



Original Article

Most read articles by the same author(s)