Methodology for reliability assessment of steel wire ropes under fretting fatigue conditions

Authors

  • S. Salleh Kiswire R&D Sdn Bhd, 33 Jalan Senyum, Kampung Wadihana, 80300 Johor Bahru, Johor, Malaysia
  • M.A. Abdullah Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • M.F. Abdulhamid Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • M.N. Tamin Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.15282/jmes.11.1.2017.8.0229

Keywords:

Drawn steel wires; fatigue damage; finite element simulation; reliability assessment; wire ropes.

Abstract

This paper describes a newly-developed damage-based fatigue life model for the longterm reliability assessment of drawn steel wires and wire ropes. The methodology is based on the computed local stress field in the critical trellis contact zone of a stranded wire rope by FE simulations and the estimated fretting damage of the drawn wire material. A case study using a single strand (1x7) steel wire rope with 5.43 mm-dia. drawn wires is employed to demonstrate the damage-based fatigue life prediction procedures. Under applied tensile loading with peak stress corresponding to 50%MBL (DP = 145 kN, R = 0.1), the von Mises stress cycles in-phase and with an identical stress ratio to the applied axial load. The damage initiation life at the trellis contact along the core wire is No = 673 cycles with an additional 589 load cycles to reach the first separation of the material point. The threshold load cycle for the fretting fatigue damage is predicted to be 12.3%MBL. An improved data set of the damage model parameters of the drawn steel wires is indispensable in achieving an accurate and validated life prediction model.

References

Raoof M, Davies TJ. Axial fatigue design of sheathed spiral strands in deep water applications. International Journal of Fatigue. 2008;30:2220-38.

Mahmud M, Abdullah S, Yunoh M, Ariffin A, Nopiah Z. Damaging fatigue cycles determination for random service loadings using mixed Weibull analysis. International Journal of Automotive and Mechanical Engineering. 2016;13.

Kamal M, Rahman MM. Fatigue life estimation models: a state of the art. International Journal of Automotive and Mechanical Engineering. 2014;9:1599.

Mahmud M, Abdullah S, Yunoh MFM, Ariffin AK, Nopiah ZM. Damaging fatigue cycles determination for random service loadings using mixed Weibull analysis. International Journal of Automotive and Mechanical Engineering. 2016;13:3628-41.

Mohamed SAN, Abdullah S, Arifin A, Ariffin AK, Padzi MM. Characterization of the biaxial fatigue behaviour on medium carbon steel using the strain-life approach. International Journal of Automotive and Mechanical Engineering. 2016;13:3262-77.

Kamal M, Rahman MM. Finite element-based fatigue behaviour of springs in automobile suspension. International Journal of Automotive and Mechanical Engineering. 2014;10:1910-9.

Kamal M, Rahman MM, Sani MSM. Application of multibody simulation for fatigue life estimation. International Journal of Automotive and Mechanical Engineering. 2013;7:912-23.

Prawoto Y, Mazlan RB. Wire ropes: Computational, mechanical, and metallurgical properties under tension loading. Computational Materials Science. 2012;56:174-8.

Winkler J, Georgakis CT, Fischer G. Fretting fatigue behavior of high-strength steel monostrands under bending load. International Journal of Fatigue. 2015;70:13-23.

Wang D, Zhang D, Wang S, Ge S. Finite element analysis of hoisting rope and fretting wear evolution and fatigue life estimation of steel wires. Engineering Failure Analysis. 2013;27:173-93.

Cruzado A, Urchegui M, Gómez X. Finite element modeling and experimental validation of fretting wear scars in thin steel wires. Wear. 2012;289:26-38.

Sasaki K, Iwakura S, Takahashi T, Moriya T, Furukawa I. Estimating the fatigue life of wire rope with a stochastic approach. Journal of Solid Mechanics and Materials Engineering. 2007;1:1052-62.

Alani M, Raoof M. Effect of mean axial load on axial fatigue life of spiral strands. International Journal of Fatigue. 1997;19:1-11.

Birkenmaier M. Fatigue resistant tendons for cable-stayed construction. International Association for Bridge and Structural Engineering; 1980.

Suh J-I, Chang SP. Experimental study on fatigue behaviour of wire ropes. International Journal of Fatigue. 2000;22:339-47.

Kamal M, Rahman MM, Rahman AGA. Fatigue life evaluation of suspension knuckle using multibody simulation technique. Journal of Mechanical Engineering and Sciences. 2012;3:291-300.

Kao P-W, Byrne J. Fatigue initiation study of TMT eutectoid steel. Metallurgical and Materials Transactions A. 1982;13:855-64.

Han JS, Kim YH, Son YJ, Choi HS. A comparative study on the fatigue life of mooring systems with different composition. Journal of Hydrodynamics, Ser B. 2010;22:452-6.

Hobbs R, Ghavani K. The fatigue of structural wire strands. International Journal of Fatigue. 1982;4:69-72.

Sivananth V, Vijayarangan S. Fatigue life analysis and optimization of a passenger car steering knuckle under operating conditions. International Journal of Automotive and Mechanical Engineering. 2015;11:2417-29.

Kamal M, Rahman MM. An Integrated approach for fatigue life estimation based on continuum mechanics theory and genetic algorithm. International Journal of Automotive and Mechanical Engineering. 2015;11:2756-70.

Kamal M, Rahman MM. Fatigue life estimation based on continuum mechanics theory with application of genetic algorithm. International Journal of Automotive and Mechanical Engineering. 2015;11:2686-98.

Kamal M, Rahman MM. Dual-criteria method for determining critical plane orientation for multiaxial fatigue prediction using a genetic algorithm. International Journal of Automotive and Mechanical Engineering. 2015;11:2571-81. [24] Shelton SM, Swanger WH. Fatigue properties of steel wires. Journal of Research of the National Bureau of Standards. 1935;14:17-32.

Verpoest I, Aernoudt E, Deruyttere A, De Bondt M. The fatigue threshold, surface condition and fatigue limit of steel wire. International journal of fatigue. 1985;7:199-214.

Beretta S, Boniardi M. Fatigue strength and surface quality of eutectoid steel wires. International Journal of Fatigue. 1999;21:329-35.

Cruzado A, Leen S, Urchegui M, Gómez X. Finite element simulation of fretting wear and fatigue in thin steel wires. International Journal of Fatigue. 2013;55:7-21.

Siswanto WA, Nagentrau M, Tobi M, Latif A. Prediction of residual stress using explicit finite element method. Journal of Mechanical Engineering and Sciences. 2015;9:1556-70.

Toribio J, Ovejero E. Effect of cumulative cold drawing on the pearlite interlamellar spacing in eutectoid steel. Scripta Materialia. 1998;39:323-8.

Toribio J, González B, Matos J. Fatigue and fracture paths in cold drawn pearlitic steel. Engineering Fracture Mechanics. 2010;77:2024-32.

Shaari MS, Akramin MRM, Ariffin AK, Abdullah S, Kikuchi M. Prediction of fatigue crack growth for semi-elliptical surface cracks using S-version fem under tension loading. Journal of Mechanical Engineering and Sciences. 2016;10:2375-86.

Beretta S, Matteazzi S. Short crack propagation in eutectoid steel wires. International Journal of Fatigue. 1996;18:451-6.

Lambrighs K, Wevers M, Verlinden B, Verpoest I. A fracture mechanics approach to fatigue of heavily drawn steel wires. Procedia Engineering. 2011;10:3259-66.

Kachanov LM. Rupture time under creep conditions. Izv AN SSSR, Otd Tekhn Nauk. 1958;8:26-31.

Imrak CE, Erdönmez C. On the problem of wire rope model generation with axial loading. Mathematical and Computational Applications. 2010;15:259-68.

Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics. 1985;21:31-48.

Rice JR, Tracey DM. On the ductile enlargement of voids in triaxial stress fields∗. Journal of the Mechanics and Physics of Solids. 1969;17:201-17.

Lemaitre J. A continuous damage mechanics model for ductile fracture. Transactions of the ASME Journal of Engineering Materials and Technology. 1985;107:83-9.

Lemaitre J. A course on damage mechanics: Springer Berlin Heidelberg; 1996.

Downloads

Published

2017-03-31

How to Cite

[1]
S. Salleh, M.A. Abdullah, M.F. Abdulhamid, and M.N. Tamin, “Methodology for reliability assessment of steel wire ropes under fretting fatigue conditions”, J. Mech. Eng. Sci., vol. 11, no. 1, pp. 2488–2502, Mar. 2017.

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.