Micro-cantilever sensor principle, design, fabrication and application: A review

Authors

  • Shivanku Chauhan Mechanical Engineering Discipline, ABES Engineering College, Ghaziabad, UP 201009 India. Phone: +917830640171
  • Shubham Kumar Mishra MEMS and Microfluidics Lab, Mechanical Engineering Discipline, PDPM-Indian Institute of Information Technology, Design and Manufacturing, Airport Road, Jabalpur, MP 482005 India
  • Abhinav Sharma MEMS and Microfluidics Lab, Mechanical Engineering Discipline, PDPM-Indian Institute of Information Technology, Design and Manufacturing, Airport Road, Jabalpur, MP 482005 India
  • Mohd. Zahid Ansari MEMS and Microfluidics Lab, Mechanical Engineering Discipline, PDPM-Indian Institute of Information Technology, Design and Manufacturing, Airport Road, Jabalpur, MP 482005 India

DOI:

https://doi.org/10.15282/jmes.19.1.2025.4.0821

Keywords:

Micro-cantilever, Sensor, MEMS, Operational modes, Sensitivity

Abstract

Micro-cantilever sensors have emerged as a transformative technology in the fields of physical, chemical, and biological sensing. Their ability to detect minute forces and changes at the nanoscale makes them ideal for applications that demand high sensitivity and portability. While these sensors have gained prominence across various domains, including medical diagnostics, environmental monitoring, and industrial testing, the field faces ongoing challenges related to their fabrication, sensitivity, and integration. This review provides a comprehensive overview of micro-cantilever sensor technology, focusing on advancements in their operating principles, design, fabrication methods, and diverse applications. Despite their many advantages, including low cost, portability, and high sensitivity, micro-cantilever sensors are still limited by issues such as fabrication difficulties, reliability, and scalability. This work aims to address these challenges by examining current trends, identifying gaps in the literature, and proposing potential solutions for overcoming the technical barriers. Key areas covered include the development of novel materials, fabrication techniques, and sensor integration methods, with a particular focus on their applications in healthcare, food safety, environmental monitoring, and explosive detection. Furthermore, the review explores the future potential of micro-cantilever sensors in emerging fields such as point-of-care diagnostics and personalized medicine. By consolidating existing knowledge and identifying areas for further research, this review highlights the importance of advancing micro-cantilever technology to enable new applications and improve existing ones. Ultimately, this work aims to contribute to the development of more reliable, scalable, and versatile sensing devices, thus expanding the potential for micro-cantilever sensors to impact a wide range of industries and applications.

References

[1] A. J. Qavi, A. L. Washburn, J. Y. Byeon, R. C. Bailey, “Label-free technologies for quantitative multiparameter biological analysis,” Analytical and Bioanalytical Chemistry, vol. 394, pp. 121-135, 2009.

[2] J. Fritz, “Cantilever biosensors,” Analyst, vol. 133, pp. 855-863, 2008.

[3] S. Singamaneni, M. C. LeMieux, H. P. Lang, C. Gerber, Y. Lam, S. Zauscher, et al., “Bimaterial microcantilevers as a hybrid sensing platform,” Advanced materials, vol. 20, no. 4, pp. 653-680, 2008.

[4] P. S. Waggoner, H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab on a Chip, vol. 7, no. 10, pp. 1238-1255, 2007.

[5] L. G. Carrascosa, M. Moreno, M. Álvarez, L. M. Lechuga, “Nanomechanical biosensors: a new sensing tool,” TrAC Trends in Analytical Chemistry, vol. 25, no. 3, pp. 196-206, 2006.

[6] A. Boisen, T. Thundat, “Design & fabrication of cantilever array biosensors,” Materials Today, vol. 12, no. 9, pp. 32-38, 2009.

[7] K. S. Hwang, S. M. Lee, S. K. Kim, J. H. Lee, T. S. Kim, “Micro- and nanocantilever devices and systems for biomolecule detection,” Annual Review of Analytical Chemistry, vol. 2, pp. 77-98, 2009.

[8] G. Binnig, C. F. Quate, C. Gerber, "Atomic Force Microscope," Physical Review Letters, vol. 56, no. 9, pp. 930-933, 1986.

[9] S. Xu, R. Mutharasan, "Toward waterborne protozoa detection using sensing technologies," Frontiers in Microbiology, vol. 14, p. 1118164, 2023.

[10] M. Feyziazar, M. Amini, A. Jahanban-Esfahlan, B. Baradaran, F. Oroojalian, A. Kamrani, et al., "Recent advances on the piezoelectric, electrochemical, and optical biosensors for the detection of protozoan pathogens," Trends in Analytical Chemistry, vol. 157, pp. 116803, 2022.

[11] S. K. Vashist, “A Review of microcantilevers for sensing applications,” Journal of Nanotechnology, vol. 3, pp.1-15, 2007.

[12] Y. Wei, Q. Xu, “An overview of micro-force sensing techniques,” Sensors and Actuators A: Physical, vol. 234, pp. 359-374, 2015.

[13] P. Puangmali, K. Althoefer, L. D. Seneviratne, D. Murphy, P. Dasgupta, “State-of-the-art in force and tactile sensing for minimally invasive surgery,” IEEE Sensors Journal, vol. 8, no. 4, pp. 371-380, 2008.

[14] T. R. Albrecht, S. Akamine, T. E. Carver, C. F. Quate, “Microfabrication of cantilever styli for the atomic force microscope,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 8, no. 4, pp. 3386-3396, 1990.

[15] O. Wolter, T. Bayer, J. Greschner, “Micromachined silicon sensors for scanning force microscopy,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 9, no. 2, pp. 1353-1357, 1991.

[16] T. Thundat, R. J. Warmack, G. Y. Chen, D. P. Allison, “Thermal and ambient-induced deflections of scanning force microscope cantilevers,” Applied Physics Letters, vol. 64, no. 21, pp. 2894-2896, 1994.

[17] M. Boudaoud, S. Regnier, “An overview on gripping force measurement at the micro and nano-scales using two-fingered microrobotic systems,” International Journal of Advanced Robotic Systems, vol. 11, no. 3, pp. 1-15, 2014.

[18] C. J. Payne, H. Rafii-Tari, H. J. Marcus, G. Z. Yang, “Hand-held microsurgical forceps with force-feedback for micromanipulation,” in IEEE International Conference on Robotics and Automation, pp. 284-289, 2014.

[19] R. J. Chang, C. C. Shiu, C. Y. Cheng, “Self-Biased-SMA drive PU microgripper with force sensing in visual servo,” International Journal of Advanced Robotic Systems, vol. 10, no. 6, pp. 1-12, 2013.

[20] M. R. Manvi, K. M. Swamy, “Microelectronic materials, microfabrication processes, micromechanical structural configuration-based stiffness evaluation in MEMS: A review,” Microelectronic Engineering, vol. 263, p. 111854, 2022.

[21] C. Liu. Foundations of MEMS. 2nd Eds. England: Pearson Education Limited, 2012.

[22] Y. J. S. Lee, J. Choi, “Biomolecular sensing with microcantilever platforms: advances and applications,” Sensors and Actuators B: Chemical, vol. 330, pp. 129-137, 2021.

[23] M. Gad-el-Hak. MEMS: Design and Fabrication. 1st Ed. Unted States: CRC Press, Taylor & Francis Group, 2005

[24] J. Wang, B. Xu, Y. Zhu, J. Zhao, “Microcantilever sensors for biochemical detection,” Journal of Semiconductors, vol. 44, no. 2, p. 023105, 2023.

[25] M. L. Aranda, L. H. Martínez, J. De la Hidalga Wade, “A test IC for wafer-level characterization of an intraCMOS-MEMS fabrication process,” IEEE Latin America Transactions, vol. 20, no. 1, pp. 108-116, 2021.

[26] J. Zhao, Z. Zhu, H. Sun, S. Lv, X. Wang, C. Song, “A MEMS fabrication process with thermal-oxide releasing barriers and polysilicon sacrificial layers for AIN lamb-wave resonators to achieve fs·Qm > 3.42 × 1012,” Micromachines, vol. 12, no. 8, p. 892, 2021.

[27] M. Sepaniak, P. Datskos, N. Lavrik, C. Tipple, “Microcantilever transducers: A new approach in sensor technology,” Analytical Chemistry, vol. 74, no. 21, pp. 568-575, 2002,

[28] B. Ilic, D. Czaplewski, H. G. Craighead, P. Neuzil, C. Campagnolo, C. Batt, “Mechanical resonant immunospecific biological detector,” Applied Physics Letters, vol. 77, no. 3, pp. 450-452, 2000.

[29] M. Su, S. Li, V. P. Dravid, “Microcantilever resonance-based DNA detection with nanoparticle probes,” Applied Physics Letters, vol. 82, no. 20, pp. 3562-3564, 2003.

[30] A. Gupta, D. Akin, R. Bashir, “Detection of bacterial cells and antibodies using surface micromachined thin silicon cantilever resonators,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 22, no. 6, pp. 2785-2791, 2004.

[31] W. H. Shih, W. Y. Shih, C. Y. Yang, H. Gu, J. W. Yi, “Nanocoating of particulate surface in colloidal processing for piezoelectric sensors applications,” Nanostructured Materials and Coatings for Biomedical and Sensor Applications, vol. 102, pp. 377-394, 2003

[32] J. H. Lee, T. S. Kim, K. H. Yoon, “Effect of mass and stress on resonant frequency shift of functionalized Pb (Zr0.52 Ti0.48)O3 thin film microcantilever for the detection of C-reactive protein,” Applied Physics Letters, vol. 84, no. 16, pp. 3187-3189, 2004.

[33] S. Li, L. Fu, J. M. Barbaree, Z. Y. Cheng, “Resonance behavior of magnetostrictive micro/milli-cantilever and its application as a biosensor,” Sensors and Actuators B: Chemical, vol. 137, no. 2, pp. 692-699, 2009.

[34] R. J. Wilfinger, P. H. Bardell, D. S. Chhabra, “The resonistor: A frequency selective device utilizing the mechanical resonance of a silicon substrate,” IBM Journal of Research and Development, vol. 12, no. 1, pp. 113-118, 1968.

[35] K. E. Petersen, “Micromechanical membrane switches on silicon,” IBM Journal of Research and Development, vol. 23, pp. 376-385, 1979.

[36] B. Ilic, Y. Yang, H. G. Craighead, “Virus detection using nanoelectromechanical devices,” Applied Physics Letters, vol. 85, no. 13, pp. 2604-2606, 2004.

[37] B. H. Cha, S. M. Lee, J. C. Park, K. S. Hwang, S. K. Kim, Y. S. Lee, et al., “Detection of hepatitis B virus (HBV) DNA at femtomolar concentrations using a silica nanoparticle-enhanced microcantilever sensor,” Biosensors and Bioelectronics, vol. 25, no. 1, pp. 130–135, 2009.

[38] S. J. Park, J. C. Doll, B. L. Pruitt, “Piezoresistive cantilever performance—part I: analytical model for sensitivity,” Journal of microelectromechanical systems, vol. 19, no. 1, pp. 137-148, 2009.

[39] Y. Tang, J. Fang, X. Yan, H. F. Ji, “Fabrication and characterization of SiO2 microcantilever for microsensor application,” Sensors and Actuators B: Chemical, vol. 97, no. 1, pp. 109-113, 2004.

[40] J. P. Cleveland, S. Manne, D. Bocek, P. K. Hansma, “A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy,” Review of Scientific Instruments, vol. 64, no. 2, pp. 403-405, 1993.

[41] S. Bashash, A. Salehi-Khojin, N. Jalili, G. L. Thompson, A. Vertegel, M. Müller, et al., "Stiffness and mass detection of Nano layers using piezoresponse force microscopy," in Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, vol. 6, pp. 717-723, 2009.

[42] T. Itoh, T. Suga, “Force sensing microcantilever using sputtered zinc oxide thin film,” Applied Physics Letters, vol. 64, no. 1, pp. 37-39, 1994.

[43] T. M. S. Heng, “Trimming of microstrip circuits utilizing microcantilever air gaps (correspondence),” IEEE Transactions on Microwave Theory and Techniques, vol. 19, no. 7, pp. 652-654, 1971.

[44] G. A. Campbell, R. Mutharasan, “A method of measuring Escherichia Coli O157:H7 at 1 Cell/mL in 1 liter sample using antibody functionalized piezoelectric-excited millimeter-sized cantilever sensor” Environmental Science & Technology, vol. 41, no. 5, pp. 1668-1674, 2007.

[45] G. A. Campbell, M. B. Medina, R. Mutharasan, “Detection of staphylococcus enterotoxin b at picogram levels using piezoelectric-excited millimeter-sized cantilever sensors,” Sensors and Actuators B: Chemical, vol. 126, no. 2, pp. 354-360, 2007.

[46] S. K. H. Lee, M. Park, “Development of a microcantilever biosensor for rapid detection of pathogens,” Sensors, vol. 21, no. 6, pp. 1991-1921, 2021.

[47] Z. Z. L. Wu, D. Xu, “Surface plasmon resonance-based biosensors for label-free detection of biomolecules,” Journal of Nanobiotechnology, vol. 19, pp. 12-24, 2021.

[48] A. W. McFarland, M. A. Poggi, L. A. Bottomley, J. S. Colton, “Production and characterization of polymer microcantilevers,” Review of Scientific Instruments, vol. 75, no. 8, pp. 2756-2758, 2004.

[49] A. W. McFarland, M. A. Poggi, L. A. Bottomley, J. S. Colton, “Injection moulding of high aspect ratio micron-scale thickness polymeric microcantilevers,” Nanotechnology, vol. 15, no. 11, pp. 1628-1632, 2004.

[50] A. W. McFarland, J. S. Colton, “Chemical sensing with micromolded plastic microcantilevers,” Journal of Microelectromechanical Systems, vol. 14, no. 6, pp. 1375-1385, 2005.

[51] A. Boisen, S. Dohn, S. S. Keller, S. Schmid, M. Tenje, “Cantilever-like micromechanical sensors,” Reports on Progress in Physics, vol. 74, no. 3, p. 036101, 2011.

[52] D. R. Rotake, A. D. Darji, “Stiffness and sensitivity analysis of microcantilever based piezoresistive sensor for bio-MEMS application,” in IEEE Sensors, pp. 1-4, 2018.

[53] N. S. Kale, V. Ramgopal Rao, “Design and fabrication issues in affinity cantilevers for bioMEMS applications,” Journal of Microelectromechanical Systems, vol. 15, no. 6, pp. 1789-1794, 2006.

[54] C. Vančura, Y. Li, J. Lichtenberg, K. U. Kirstein, A. Hierlemann, F. Josse, “Liquid-phase chemical and biochemical detection using fully integrated magnetically actuated complementary metal oxide semiconductor resonant cantilever sensor systems,” Analytical Chemistry, vol. 79, no. 4, pp. 1646-1654, 2007.

[55] C. Birleanu, M. Pustan, C. Dudescu, V. Merie, I. Pintea, “Analysis of the bending stiffness and adhesion effect in RF-MEMS structures,” in IOP Conference Series: Materials Science and Engineering, vol. 174, p. 012029, 2017.

[56] T. Thundat, G. Y. Chen, R. J. Warmack, D. P. Allison, E. A. Wachter, “Vapor detection using resonating microcantilevers,” Analytical Chemistry, vol. 67, no. 3, pp. 519-521, 1995.

[57] S. Duffy, C. Bozler, S. Rabe, J. Knecht, L. Travis, P. Wyatt et al., “MEMS microswitches for reconfigurable microwave circuitry,” IEEE Microwave and Wireless Components Letters, vol. 11, no. 3, pp. 106-108, 2001.

[58] K. Prashanthi, M. Mandal, S. P. Duttagupta, R. Pinto, V. R. Palkar, “Fabrication and characterization of a novel magnetoelectric multiferroic MEMS cantilevers on Si,” Sensors and Actuators A: Physical, vol. 166, no. 1, pp. 83-87, 2011.

[59] M. A. Indianto, M. Toda, T. Ono, “Comprehensive study of magnetostriction-based MEMS magnetic sensor of a FeGa/PZT cantilever,” Sensors and Actuators A: Physical, vol. 331, pp. 112985, 2021.

[60] N. P. Mahlik. Microelectromechanical Systems. 1st Ed. California: Tata McGraw-Hill Education, 2008.

[61] G. S. May, C. J. Spanos. Fundamentals of Semiconductor Manufacturing and Process Control. 1st Ed. United States: John Wiley & Sons, 2006.

[62] S. K. Ghandhi. VLSI Fabrication Principles: Silicon and Gallium Arsenide. 2nd Eds. California: John Wiley & Sons, 1994.

[63] D. Pugal, S. J. Kim, K. J. Kim, K. K. Leang, "IPMC: recent progress in modeling, manufacturing, and new applications," in Proceedings of the SPIE: Electroactive Polymer Actuators and Devices (EAPAD), vol. 7642, p. 76420U, 2010.

[64] Z. Chen, X. Tan, “Monolithic fabrication of ionic polymer–metal composite actuators capable of complex deformation,” Sensors and Actuators A: Physical, vol. 157, no. 2, pp. 246-257, 2010.

[65] M. C. LeMieux, M. E. McConney, Y. H. Lin, S. Singamaneni, H. Jiang, T. J. Bunning et al., “Polymeric nanolayers as actuators for ultrasensitive thermal bimorphs,” Nano Letters, vol. 6, no. 4, pp. 730-734, 2006.

[66] Y. H. Lin, M. E. McConney, M. C. LeMieux, S. Peleshanko, C. Jiang, S. Singamaneni, et al., “Trilayered ceramic–metal–polymer microcantilevers with dramatically enhanced thermal sensitivity,” Advanced Materials, vol. 18, no. 9, pp. 1157-1161, 2006.

[67] S. Stassi, E. Fantino, R. Calmo, A. Chiappone, M. Gillono, D. Scaiola, et al., “Polymeric 3D printed functional microcantilevers for biosensing applications,” ACS Applied Materials & Interfaces, vol. 9, no. 22, pp. 19193-19201, 2017.

[68] K. Kikuchi, T. Taniguchi, H. Miki, S. Tsuchitani, K. Asaka, “Microfabrication of ionic polymer actuators by selective plasma irradiation,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 9, no. 5, pp. 572-574, 2014.

[69] A. Maziz, C. Plesse, C. Soyer, C. Chevrot, D. Teyssié, E. Cattan, et al., “Demonstrating kHz frequency actuation for conducting polymer microactuators,” Advanced Functional Materials, vol. 24, no. 30, pp. 4851-4859, 2014.

[70] H. Lei, W. Li, X. Tan, “Microfabrication of IPMC cilia for bio-inspired flow sensing,” in Electroactive Polymer Actuators and Devices, vol. 8340, p. 83401A, 2012.

[71] T. Taaber, M. Antsov, S. Vlassov, U. Mäeorg, L. Dorogin, M. Järvekülg, et al., “Formation and characterization of microcantilevers produced from ionic liquid by electron beam irradiation,” Journal of Molecular Liquids, vol. 229, pp. 45-50, 2017.

[72] Y. Shang, X. Ye, J. Feng, H. Zhou, Y. Wang, “Fabrication and characterization of a polymer/metal bimorph microcantilever for ultrasensitive thermal sensing,” IEEE Sensors Journal, vol. 14, no. 4, pp. 1304-1312, 2014.

[73] Y. Y. Kim, “Young’s modulus measurement of a silicon nitride thin-film using an ultrasonically actuated microcantilever,” Measurement, vol. 115, pp. 133-138, 2018.

[74] L. Fadel, I. Dufour, F. Lochon, O. Francais, “Signal-to-noise ratio of resonant microcantilever type chemical sensors as a function of resonant frequency and quality factor,” Sensors and Actuators B: Chemical, vol. 102, no. 1, pp. 73-77, 2004.

[75] N. V. Lavrik, M. J. Sepaniak, P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Review of Scientific Instruments, vol. 75, no. 7, pp. 2229-2253, 2004.

[76] C. T. Gibson, D. A. Smith, C. J. Roberts, “Calibration of silicon atomic force microscope cantilevers,” Nanotechnology, vol. 16, no. 2, pp. 234-238, 2005.

[77] Q. Ren, Y. P. Zhao, “Influence of surface stress on frequency of microcantilever-based biosensors,” Microsystem Technologies, vol. 11, no. 6, pp. 456-456, 2005.

[78] S. Watanabe, T. Fujii, “Micro‐fabricated piezoelectric cantilever for atomic force microscopy,” Review of Scientific Instruments, vol. 67, no. 11, pp. 3898-3903, 1996.

[79] M. Z. Ansari, C. Cho, “Deflection, frequency, and stress characteristics of rectangular, triangular, and step profile microcantilevers for biosensors,” Sensors, vol. 9, no. 8, pp. 6046-6057, 2009.

[80] S. Bashmal, “Static and dynamic analysis of microcantilever beam under electrical loading using couple stress theory,” in ASME International Mechanical Engineering Congress Exposition, vol. 4A, no. V04AT04A037, 2013.

[81] S. Chauhan, M. Z. Ansari, “Vacuum-assisted piezoelectric cantilever mass sensor performance,” Journal of Mechanical Science and Technology, vol. 35, no. 12, pp. 5489-5494, 2021.

[82] M. Z. Ansari, C. Cho, J. Kim, B. Bang, “Comparison between deflection and vibration characteristics of rectangular and trapezoidal profile microcantilevers,” Sensors, vol. 9, no. 4, pp. 2706-2718, 2009.

[83] M. Z. Ansari, C. Cho, “A study on increasing sensitivity of rectangular microcantilevers used in biosensors,” Sensors vol. 8, no. 11, pp. 7530-7544, 2008.

[84] G. Villanueva, J. A. Plaza, J. Montserrat, F. P. Murano, J. Bausells, “Crystalline silicon cantilevers for piezoresistive detection of biomolecular forces,” Microelectronic Engineering, vol. 85, no. 5-6, pp. 1120-1123, 2008.

[85] S. Fernando, M. Austin, J. Chaffey, “Improved cantilever profiles for sensor elements,” Journal of Physics D: Applied Physics, vol. 40, no. 24, pp. 7652-7655, 2007.

[86] A. R. A. Khaled, K. Vafai, M. Yang, X. Zhang, C. S. Ozkan, “Analysis, control and augmentation of microcantilever deflections in bio-sensing systems,” Sensors and Actuators B: Chemical, vol. 94, no. 1, pp. 103-115, 2003.

[87] X. R. Zhang, X. Xu, “Development of a biosensor based on laser-fabricated polymer microcantilevers,” Applied Physics Letters, vol. 85, no. 12, pp. 2423-2425, 2004.

[88] M. Nordström, S. Keller, M. Lillemose, A. Johansso, S. Dohn, D. Haefliger, et al., “SU-8 cantilevers for bio/chemical sensing; fabrication, characterisation and development of novel read-out methods,” Sensors, vol. 8, no. 3, pp. 1595-1612, 2008.

[89] J. H. T. Ransley, M. Watari, D. Sukumaran, R. A. McKendry, A. A. Seshia, “SU8 bio-chemical sensor microarrays,” Microelectronic Engineering, vol. 83, no. 4-9, pp. 1621–1625, 2006.

[90] A. Johansson, G. Blagoi, A. Boisen, “Polymeric cantilever-based biosensors with integrated readout,” Applied Physics Letters, vol. 89, no. 17, p. 173505, 2006.

[91] S. Subramanian, N. Gupta, “Improved V-shaped microcantilever width profile for sensing applications,” Journal of Physics D: Applied Physics, vol. 42, no. 18, pp. 1-6, 2009.

[92] M. Hossein Ghajar, S. Burzhuev, M. Irannejad, M. Yavuz, “A short review on fabrication methods of micro-cantilever for ionic electroactive polymer sensors/actuators,” International Journal of Nanoscience and Nanotechnology, vol. 14, pp. 101-109, 2018.

[93] S. Chauhan, M. Z. Ansari, “Frequency response of a self-actuating cantilever sensor immersed in fluid,” Journal of Mechanical Science and Technology, vol. 35, no. 4, pp. 1457-1462, 2021.

[94] H. Ibach, “Adsorbate-induced surface stress,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 12, no. 4, pp. 2240-2245, 1994.

[95] R. Berger, E. Delamarche, H. P. Lang, C. Gerber, J. K. Gimzewski, E. Meyer, et al., “Surface stress in the self-assembly of alkanethiols on gold,” Science, vol. 276, no. 5321, pp. 2021-2024, 1997.

[96] J. K. Gimzewski, C. Gerber, E. Meyer, R. R. Schlittler, “Observation of a chemical reaction using a micromechanical sensor,” Chemical Physics Letters, vol. 217, no. 5-6, pp. 589-594, 1994.

[97] B. N. Johnson. R. Mutharasan, “Biosensing using dynamic-mode cantilever sensors: A review,” Biosensors and Bioelectronics, vol. 32, no. 1, pp. 1-18, 2012.

[98] G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R.J. Cote, A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nature Biotechnology, vol. 19, no. 9, pp. 856-860, 2001.

[99] N. E. Oyunbaatar, P. P. Kanade, D. W. Lee, “Stress-assisted gold micro-wrinkles on a polymer cantilever for cardiac tissue engineering,” Colloids and Surfaces B: Biointerfaces, vol. 209, p. 112210, 2022.

[100] H. Li, Y. Li, K. Wang, L. Lai, X. Xu, S. Bin, et al., “Ultra-high sensitive micro-chemo-mechanical hydrogen sensor integrated by palladium-based driver and high-performance piezoresistor,” International Journal of Hydrogen Energy, vol. 46, no. 1, pp. 1434-1445, 2021.

[101] J. Cui, Y. Li, Y. Yang, P. Shi, B. Wang, S. Wang, et al., “Design and optimization of MEMS heart sound sensor based on bionic structure,” Sensors and Actuators A: Physical, vol. 333, p. 113188, 2022.

[102] V. N. Varghees, K. I. Ramachandran, “Effective heart sound segmentation and murmur classification using empirical wavelet transform and instantaneous phase for electronic stethoscope,” IEEE Sensors Journal, vol. 17, no. 12, pp. 3861-3872, 2017.

[103] T. Chen, S. Yang, “S1 and S2 heart sound recognition using deep neural networks,” IEEE Transactions on Biomedical Engineering, vol. 64, no. 2, pp. 372-380, 2017.

[104] C. Xie, J. Li, W. Wang, “A package for piezoresistive pressure sensors with embedded built-in self-test function based on bimetallic actuator,” Sensors and Actuators A: Physical, vol. 346, p. 113817, 2022.

[105] N. Blanc, J. Brugger, N. F. de Rooij, U. Dürig, “Scanning force microscopy in the dynamic mode using microfabricated capacitive sensors,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 14, no. 2, pp. 901-905, 1996.

[106] S. Timoshenko. Vibration Problems in Engineering. 5th Eds. New York: John Wiley & Sons, 1991.

[107] J. G. S. Timoshenko. Theory of Elasticity. 3rd Eds. New York: McGraw-Hill, 1970.

[108] D. Hur, J. H. Lee, “Determination of liquid density and viscosity using a self-actuating microcantilever,” Japanese Journal of Applied Physics, vol. 52, no. 5, p. 056601, 2013.

[109] B. Abdul, V. M. Mastronardi, A. Qualtieri, F. Guido, L. Algieri, F. Rizzi, et al., “Design, fabrication and characterization of piezoelectric cantilever MEMS for underwater application,” Micro and Nano Engineering, vol. 7, p. 100050, 2020.

[110] R. Abraham, Y. Yoon, F. Khan, S.A. Bukhari, C. Kim, T. Thundat, et al., “Measurement of thermal properties of liquid analytes using microfluidic resonators via photothermal modulation,” Sensors & Actuators: A. Physical, vol. 347, p. 113994, 2022.

[111] I. S. Amiri, S. Addanki, “Simulation fabrication and characterization of micro-cantilever array-based ozone sensor,” Results in Physics, vol. 10, pp. 923-933, 2018.

[112] J. Hu, H. Peng, T. Mao, T. Liu, M. Guo, P. Lu, et al., “An airflow sensor array based on polyvinylidene fluoride cantilevers for synchronously measuring airflow direction and velocity,” Flow Measurement and Instrumentation, vol. 67, pp. 166-175, 2019.

[113] C. A. Savran, T. P. Burg, J. Fritz, S. R. Manalis, “Microfabricated mechanical biosensor with inherently differential readout,” Applied Physics Letters, vol. 83, no. 8, pp. 1659-1661, 2003.

[114] A. A. Barlian, W. T. Park, J. R. Mallon, A. J. Rastegar, B. L. Pruitt, “Review: Semiconductor piezoresistance for microsystems,” Proceedings of the IEEE, vol. 97, no. 3, pp. 513-552, 2009.

[115] S. S, M. Sahoo, S. Dutta, “Thick films for high-temperature piezoelectric applications - A future reference,” Journal of Electroceramics, vol. 51, no. 4, pp. 269-280, 2023.

[116] T. Itoh, T. Suga, “Development of a force sensor for atomic force microscopy using piezoelectric thin films,” Nanotechnology, vol. 4, no. 4, pp. 218-224, 1993.

[117] S. C. Minne, S. R. Manalis, A. Atalar, C. F. Quate, “Contact imaging in the atomic force microscope using a higher order flexural mode combined with a new sensor,” Applied Physics Letters, vol. 68, no. 10, pp. 1427-1429, 1996.

[118] S. Xu, R. Mutharasan, “Rapid and sensitive detection of giardia lamblia using a piezoelectric cantilever biosensor in finished and source waters,” Environmental Science & Technology, vol. 44, no. 5, pp. 1736-1741, 2010.

[119] A. N. Cleland, M. Pophristic, I. Ferguson, “Single-crystal aluminum nitride nanomechanical resonators,” Applied Physics Letters, vol. 79, no. 13, pp. 2070-2072, 2001.

[120] T. Itoh, T. Suga, “Piezoelectric force sensor for scanning force microscopy,” Sensors and Actuators A: Physical, vol. 43, no. 1–3, pp. 305-310, 1994.

[121] J. D. Adams, B. Rogers, L. Manning, Z. Hu, T. Thundat, H. Cavazos, et al., “Piezoelectric self-sensing of adsorption-induced microcantilever bending,” Sensors and Actuators A: Physical, vol. 121, no. 2, pp. 457-461, 2005.

[122] H. Yu, X. Li, X. Gan, Y. J. Liu, X. Liu, P. C. Xu, et al., “Resonant-cantilever bio/chemical sensors with an integrated heater for both resonance exciting optimization and sensing repeatability enhancement,” Journal of Micromechanics and Microengineering, vol. 19, no. 4, pp. 1-10, 2009.

[123] C. Zhuang, K. Minami, K. Shiba, G. Yoshikawa, “Tailoring stresses in piezoresistive microcantilevers for enhanced surface stress sensing: insights from topology optimization,” Japanese Journal of Applied Physics, vol. 63, no. 1, p. 015005, 2024.

[124] I. Voiculescu, M. E. Zaghloul, R. A. McGill, E. J. Houser, G. K. Fedder, “Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons,” IEEE Sensors Journal, vol. 5, no. 4, pp. 641-647, 2005.

[125] A. Boisen, J. Thaysen, H. Jensenius, O. Hansen, “Environmental sensors based on micromachined cantilevers with integrated read-out,” Ultramicroscopy, vol. 82, no. 1-4, pp. 11-16, 2000.

[126] M. Li, H. X. Tang, M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nature Nanotechnology, vol. 2, no. 2, pp. 114-120, 2007.

[127] H. Jensenius, J. Thaysen, A. A. Rasmussen, L. H. Veje, O. Hansen, A. Boisen, “A microcantilever-based alcohol vapor sensor-application and response model,” Applied Physics Letters, vol. 76, no. 18, pp. 2615-2617, 2000.

[128] J. Thaysen, A. D. Yal inkaya, P. Vettiger, A. Menon, “Polymer-based stress sensor with integrated readout,” Journal of Physics D: Applied Physics, vol. 35, no. 21, pp. 2698-2703, 2002.

[129] M. Tortonese, R. C. Barrett, C. F. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection.,” Applied Physics Letters, vol. 62, no. 8, pp. 834-836, 1993.

[130] R. Linnemann, T. Gotszalk, L. Hadjiiski, I. W. Rangelow, “Characterization of a cantilever with an integrated deflection sensor,” Thin Solid Films, vol. 264, no. 2, pp. 159-164, 1995.

[131] J. H. Park, D. Graf, T. P. Murphy, G. M. Schmiedeshoff, S. W. Tozer, “High resolution miniature dilatometer based on an atomic force microscope piezocantilever,” Review of Scientific Instruments, vol. 80, no. 11, p. 116101, 2009.

[132] G. A. Baker, R. Desikan, T. Thundat, “Label-free sugar detection using phenylboronic acid-functionalized piezoresistive microcantilevers,” Analytical Chemistry, vol. 80, no. 13, pp. 4860-4865, 2008.

[133] G. Yoshikawa, H.-P. Lang, T. Akiyama, L. Aeschimann, U. Staufer, P. Vettiger, et al., “Sub-ppm detection of vapors using piezoresistive microcantilever array sensors,” Nanotechnology, vol. 20, no. 1, pp. 1-5, 2009.

[134] J. Thaysen, A. Boisen, O. Hansen, S. Bouwstra, “Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical Wheatstone bridge arrangement,” Sensors and Actuators A: Physical, vol. 83, no. 1-3, pp. 47-53, 2000.

[135] P. A. Rasmussen, J. Thaysen, S. Bouwstra, A. Boisen, “Modular design of AFM probe with sputtered silicon tip,” Sensors and Actuators A: Physical, vol. 92, no. 1-3, pp. 96-101, 2001.

[136] S. J. Park, J. C. Doll, B. L. Pruitt, “Piezoresistive cantilever performance—part I: Analytical model for sensitivity,” Journal of Microelectromechanical Systems., vol. 19, no. 1, pp. 137-148, 2010.

[137] M. Narducci, E. Figueras, M. J. Lopez, I. Gracia, J. Santander, P. Ivanov, et al., “Sensitivity improvement of a microcantilever based mass sensor,” Microelectronic Engineering, vol. 86, no. 4-6, pp. 1187-1189, 2009.

[138] S. J. Park, J. C. Doll, A. J. Rastegar, B. L. Pruitt, “Piezoresistive cantilever performance—part II: Optimization,” Journal of Microelectromechanical Systems, vol. 19, no. 1, pp. 149-161, 2010.

[139] A. Hierlemann, D. Lange, C. Hagleitner, N. Kerness, A. Koll, O. Brand, et al., “Application-specific sensor systems based on CMOS chemical microsensors,” Sensors and Actuators B: Chemical, vol. 70, no. 1-3, pp. 2-11, 2000.

[140] A. N. Cleland, M. L. Roukes, “Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals,” Applied Physics Letters, vol. 69, no. 18, pp. 2653-2655, 1996.

[141] J. Bay, S. Bouwstra, E. Laegsgaard, O. Hansen, “Micromachined AFM transducer with differential capacitive read-out,” Journal of Micromechanics and Microengineering, vol. 5, no. 2, pp. 161-165, 1995.

[142] S. Ghatnekar-Nilsson, E. Forsén, G. Abadal, J. Verd, F. Campabadal, M. F. Perez, et al., “Resonators with integrated CMOS circuitry for mass sensing applications, fabricated by electron beam lithography,” Nanotechnology, vol. 16, no. 1, pp. 98-102, 2005.

[143] S. J. Kim, T. Ono, M. Esashi, “Capacitive resonant mass sensor with frequency demodulation detection based on resonant circuit,” Applied Physics Letters, vol. 88, no. 5, p. 053116, 2006.

[144] M. Villarroya, J. Verd, J. Teva, G. Abadal, E. Forsen, F. P. Murano, et al., “System on chip mass sensor based on polysilicon cantilevers arrays for multiple detection,” Sensors and Actuators A: Physical, vol. 132, no. 1, pp. 154-164, 2006.

[145] E. Forsen, G. Abadal, S. Ghatnekar-Nilsson, J. Teva, J. Verd, R. Sandberg, et al., “Ultrasensitive mass sensor fully integrated with complementary metal-oxide-semiconductor circuitry,” Applied Physics Letters, vol. 87, no. 4, p. 043507, 2005.

[146] J. Teva, G. Abadal, F. Torres, J. Verd, F. Pérez-Murano, N. Barniol, “A femtogram resolution mass sensor platform, based on SOI electrostatically driven resonant cantilever. Part I: Electromechanical model and parameter extraction,” Ultramicroscopy, vol. 106, no. 8-9, pp. 800-807, 2006.

[147] J. Arcamone, G. Rius, G. Abadal, J. Teva, N. Barniol, F. Pérez-Murano, “Micro/nanomechanical resonators for distributed mass sensing with capacitive detection,” Microelectronic Engineering, vol. 83, no. 4-9, pp. 1216-1220, 2006.

[148] S. Ghatnekar Nilsson, I. Karlsson, A. Kvennefors, G. Luo, V. Zela, M. Arlelid, et al., “A new multifunctional platform based on high aspect ratio interdigitated NEMS structures,” Nanotechnology, vol. 20, no. 17, p. 175502, 2009.

[149] J. Verd, G. Abadal, J. Teva, M. Villarroya, A. Uranga, X. Borrisé, et al., “Design, fabrication, and characterization of a submicroelectromechanical resonator with monolithically integrated CMOS readout circuit,” Journal of Microelectromechanical Systems, vol. 14, no. 3, pp. 508-519, 2005.

[150] E. Forsén, S. G. Nilsson, P. Carlberg, G. Abadal, F. Perez-Murano, J. Esteve, et al., “Fabrication of cantilever based mass sensors integrated with CMOS using direct write laser lithography on resist,” Nanotechnology, vol. 15, no. 10, pp. 628-633, 2004.

[151] H. P. Lang, R. Berger, F. Battiston, J. P. Ramseyer, E. Meyer, C. Andreoli, et al., “A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors,” Applied Physics A: Materials Science & Processing, vol. 66, no. 7, pp. 61-64, 1998.

[152] H. P. Lang, M. K. Baller, R. Berger, C. Gerber, J. K. Gimzewsk, F. M. Battiston, et al., "An artificial nose based on microcantilever array sensors," Analytica Chimica Acta, vol. 393, pp. 59-65, 1999.

[153] H. P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, et al., “Sequential position readout from arrays of micromechanical cantilever sensors,” Applied Physics Letters, vol. 72, no. 3, pp. 383-385, 1998.

[154] S. H. S. Lim, D. Raorane, S. Satyanarayana, A. Majumdar, “Nano-chemo-mechanical sensor array platform for high-throughput chemical analysis,” Sensors and Actuators B: Chemical, vol. 119, no. 2, pp. 466-474, 2006.

[155] M. Yue, J. C. Stachowiak, H. Lin, R. Datar, R. Cote, A. Majumdar, “Label-free protein recognition two-dimensional array using nanomechanical sensors,” Nano Letters, vol. 8, no. 2, pp. 520-524, 2008.

[156] M. Yue, H. Lin, D. E. Dedrick, S. Satyanarayana, A. Majumdar, A.S. Bedekar, et al., “A 2-D microcantilever array for multiplexed biomolecular analysis,” Journal of Microelectromechanical Systems, vol. 13, no. 2, pp. 290-299, 2004.

[157] J. Mertens, M. Álvarez, J. Tamayo, “Real-time profile of microcantilevers for sensing applications,” Applied Physics Letters, vol. 87, no. 23, p. 234102, 2005.

[158] F. Amiot, J. P. Roger, “Nomarski imaging interferometry to measure the displacement field of micro-electro-mechanical systems,” Applied Optics, vol. 45, no. 30, pp. 7800-7810, 2006.

[159] F. Amiot, F. Hild, F. Kanoufi, J. P. Roger, “Identification of the electroelastic coupling from full multi-physical fields measured at the micrometre scale,” Journal of Physics D: Applied Physics, vol. 40, no. 11, pp. 3314-3325, 2007.

[160] D. Larsson, A. Greve, J. M. Hvam, A. Boisen, K. Yvind, “Self-mixing interferometry in vertical-cavity surface-emitting lasers for nanomechanical cantilever sensing,” Applied Physics Letters, vol. 94, no. 9, p. 091103, 2009.

[161] K. Zinoviev, C. Dominguez, J. A. Plaza, V. J. C. Busto, L. M. Lechuga, “A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces,” Journal of Lightwave Technology, vol. 24, no. 5, pp. 2132-2138, 2006.

[162] M. Nordström, D. A. Zauner, M. Calleja, J. Hübner, A. Boisen, “Integrated optical readout for miniaturization of cantilever-based sensor system,” Applied Physics Letters, vol. 91, no. 10, p. 103512, 2007.

[163] L. W. A. Zhang, M. Liu, “Advancements in label-Free optical biosensors for biomolecular detection,” Trends in Analytical Chemistry, vol. 142, pp. 116-124, 2021.

[164] D. J. Leo. Engineering Analysis of Smart Material Systems. 1st Ed. New Jersey: John Wiley & Sons, 2007.

[165] W. Chen, X. Yan, “Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review,” Journal of Materials Science & Technology, vol. 43, pp. 175-188, 2020.

[166] Q. Zheng, J. Lee, X. Shen, X. Chen, J. K. Kim, “Graphene-based wearable piezoresistive physical sensors,” Materials Today, vol. 36, pp. 158-179, 2020.

[167] A. Sharma, M. Z. Ansari, C. Cho, “Ultrasensitive flexible wearable pressure/strain sensors: Parameters, materials, mechanisms and applications,” Sensors and Actuators A: Physical, vol. 347, p. 113934, 2022.

[168] X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan, Z. L. Wang, “Recent progress in electronic skin,” Advanced Science, vol. 2, no. 10, pp. 1-21, 2015.

[169] R. Berger, H. P. Lang, C. Gerber, J. K. Gimzewski, J. H. Fabian, L. Scandella, et al., “Micromechanical thermogravimetry,” Chemical Physics Letters, vol. 294, no. 4-5, pp. 363-369, 1998.

[170] M. A. Shah, F. Iqbal, I. A. Shah, B. Lee, “Modal analysis of a single-structure multiaxis MEMS gyroscope,” Journal of Sensors, vol. 2016, pp. 1-8, 2016.

[171] J. Giner, D. Maeda, K. Ono, A. M. Shkel, T. Sekiguchi, “MEMS gyroscope with concentrated springs suspensions demonstrating single digit frequency split and temperature robustness,” Journal of Microelectromechanical Systems, vol. 28, no. 1, pp. 25-35, 2019.

[172] J. He, W. Zhou, H. Yu, X. He, P. Peng, “Structural designing of a MEMS capacitive accelerometer for low temperature coefficient and high linearity,” Sensors, vol. 18, no. 2, pp. 1-13, 2018.

[173] H. Farahani, R. Wagiran, M. Hamidon, “Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review,” Sensors, vol. 14, no. 5, pp. 7881-7939, 2014.

[174] S. Pokhrel, B. Jeyaraj, K. S. Nagaraja, “Humidity-sensing properties of ZnCr2O4–ZnO composites,” Materials Letters, vol. 57, no. 22-23, pp. 3543-3548, 2003.

[175] Y. S. Chen, Y. Li, M. J. Yang, “Humidity sensitive properties of NaPSS/MWNTs nanocomposites,” Journal of Materials Science, vol. 40, no. 18, pp. 5037-5039, 2005.

[176] Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, L. Luo, “Zinc oxide nanorod and nanowire for humidity sensor,” Applied Surface Science, vol. 242, no. 1-2, pp. 212-217, 2005.

[177] Q. Kuang, C. Lao, Z. L. Wang, Z. Xie, L. Zheng, “High-sensitivity humidity sensor based on a single SnO2 nanowire,” Journal of the American Chemical Society, vol. 129, no. 19, pp. 6070-6071, 2007.

[178] A. Kassas, J. Bernard, C. Lelièvre, D. Houivet, H. Lakiss, T. Hamieh, “Humidity sensitive characteristics of porous Li-Mg-Ti-O-F ceramic materials,” American Journal of Analytical Chemistry, vol. 4, no. 2, pp. 83-89, 2013.

[179] K. Wang, X. Qian, L. Zhang, Y. Li, and H. Liu, “Inorganic–organic p-n heterojunction nanotree arrays for a high-sensitivity diode humidity sensor,” ACS Applied Materials & Interfaces, vol. 5, no. 12, pp. 5825-5831, 2013.

[180] E. W. Merrill, E. R. Gilliland, G. Cokelet, H. Shin, A. Britten, R. E. Wells, “Rheology of human blood, near and at zero flow,” Biophysical Journal, vol. 3, no. 3, pp. 199-213, 1963.

[181] T. Wang, Y. Guan, J. Pang, N. Li, J. Nie, J. Xie, “An accurate dew point sensor based on MEMS piezoelectric resonator and piecewise fitting method,” Sensors and Actuators B: Chemical, vol. 370, p. 132411, 2022.

[182] N. Inomata, M. Toda, M. Sato, A. Ishijima, T. Ono, “Pico calorimeter for detection of heat produced in an individual brown fat cell,” Applied Physics Letters, vol. 100, no. 15, p. 154104, 2012.

[183] R. Raiteri, M. Grattarola, H. J. Butt, P. Skládal, “Micromechanical cantilever-based biosensors,” Sensors and Actuators B: Chemical, vol. 79, no. 2-3, pp. 115-126, 2001.

[184] H. P. Lang, M. Hegner, and C. Gerber, “Cantilever array sensors,” Materials Today, vol. 8, no. 4, pp. 30-36, 2005.

[185] M. L. Sushko, J. H. Harding, A. L. Shluger, R.A. McKendry, M. Watari, “Physics of nanomechanical biosensing on cantilever arrays,” Advanced Materials, vol. 20, no. 20, pp. 3848-3853, 2008.

[186] W. H. Grover, A. K. Bryan, M. Diez-Silva, S. Suresh, J. M. Higgins, S. R. Manalis, “Measuring single-cell density,” Proceedings of the National Academy of Sciences, vol. 108, no. 27, pp. 10992-10996, 2011.

[187] J. R. Barnes, R. J. Stephenson, M. E. Welland, C. Gerber, J. K. Gimzewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device,” Nature, vol. 372, no. 6501, pp. 79-81, 1994.

[188] J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. OShea, M. E. Welland T. Rayment, et al., “A femtojoule calorimeter using micromechanical sensors,” Review of Scientific Instruments, vol. 65, no. 12, pp. 3793-3798, 1994.

[189] P. G. Datskos, P. I. Oden, T. Thundat, E. A. Wachter, R. J. Warmack, S. R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers,” Applied Physics Letters, vol. 69, no. 20, pp. 2986-2988, 1996.

[190] W. Y. Shih, X. Li, H. Gu, W. H. Shih, I. A. Aksay, “Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers,” Journal of Applied Physics, vol. 89, no. 2, pp. 1497-1505, 2001.

[191] P. I. Oden, G. Y. Chen, R. A. Steele, R. J. Warmack, T. Thundat, “Viscous drag measurements utilizing microfabricated cantilevers,” Applied Physics Letters, vol. 68, no. 26, pp. 3814-3816, 1996.

[192] O. K. Baskurt, H. J. Meiselman, “Blood rheology and hemodynamics,” Seminars in Thrombosis and Hemostasis, vol. 50, no. 6, pp. 902-915, 2024.

[193] K. W. S. Sun, J. Li, “Nanomechanical sensors for environmental and health monitoring,” Environmental Science & Technology, vol. 55, no. 4, pp. 2511-2519, 2021.

[194] A. I. Fedorchenko, Z. Travnicek, C. L. Chang, W. C. Wang, “Viscosity measurement using fiber bend loss sensor,” in International Symposium on Optomechatronic Technologies, pp. 1-5, 2012.

[195] L. A. Pinnaduwage, J. E. Hawk, V. Boiadjiev, D. Yi, T. Thundat, “Use of microcantilevers for the monitoring of molecular binding to self-assembled monolayers,” Langmuir, vol. 19, no. 19, pp. 7841-7844, 2003.

[196] L. Senesac, T. G. Thundat, “Nanosensors for trace explosive detection,” Materials Today, vol. 11, no. 3, pp. 28-36, 2008.

[197] J. Yinon, “Detection of explosives by electronic noses,” Analytical Chemistry, vol. 75, no. 5, pp. 98-105, 2003.

[198] M. K. Baller, H. P. Lang, J. Fritz, C. Gerber, J.K. Gimzewski, U. Drechsler, et al., “A cantilever array-based artificial nose,” Ultramicroscopy, vol. 82, no. 1-4, pp. 1-9, 2000.

[199] G. Zuo, X. Li, Z. Zhang, T. Yang, Y. Wang, Z. Cheng, et al., “Dual-SAM functionalization on integrated cantilevers for specific trace-explosive sensing and non-specific adsorption suppression,” Nanotechnology, vol. 18, no. 25, p. 255501, 2007.

[200] S. J. Patil, N. Duragkar, V. R. Rao, “An ultra-sensitive piezoresistive polymer nano-composite microcantilever sensor electronic nose platform for explosive vapor detection,” Sensors and Actuators B: Chemical, vol. 192, pp. 444-451, 2014.

[201] R. Likhite, A. Banerjee, A. Majumder, M. Karkhanis, H. Kim, C.H. Mastrangelo, “VOC sensing using batch-fabricated temperature compensated self-leveling microstructures,” Sensors and Actuators B: Chemical, vol. 311, p. 127817, 2020.

[202] B. Guruprasad, M. G. Veena, “Analysis of MEMS cantilever sensor for sensing volatile organic compounds,” Micro and Nano Engineering, vol. 16, p. 100143, 2022.

[203] H. A. C. Tilmans, W. De Raedt, E. Beyne, “MEMS for wireless communications: from RF-MEMS components to RF-MEMS-SiP,” Journal of Micromechanics and Microengineering, vol. 13, no. 4, pp. 139-163, 2003.

[204] L. J. Fernández, R. J. Wiegerink, J. Flokstra, J. Sesé, H. V Jansen, M. Elwenspoek, “A capacitive RF power sensor based on MEMS technology,” Journal of Micromechanics and Microengineering, vol. 16, no. 7, pp. 1099-1107, 2006.

[205] Z. Yi, X. Liao, “Measurements on intermodulation distortion of capacitive power sensor based on mems cantilever beam,” IEEE Sensors Journal, vol. 14, no. 3, pp. 621-622, 2014.

[206] H. Yan, X. Liao, C. Chen, C. Li, “High-power handling analysis of a capacitive MEMS power sensor at X-band,” IEEE Sensors Journal, vol. 18, no. 13, pp. 5272-5277, 2018.

[207] C. Chu, X. Liao, C. Chen, “Improved dynamic range of microwave power sensor by mems cantilever beam,” Journal of Microelectromechanical Systems, vol. 26, no. 6, pp. 1183-1185, 2017.

[208] A. Talic, S. Cerimovic, R. Beigelbeck, F. Kohl, T. Sauter, F. Keplinger, “MEMS flow sensors based on self-heated age-thermistors in a wheatstone bridge,” Sensors, vol. 15, no. 5, pp. 10004-10025, 2015.

[209] J. Li, X. Liao, “High-power electro-mechanical behavior of a capacitive microwave power sensor with warped cantilever beam,” Solid-State Electronics, vol. 172, p. 107877, 2020.

[210] Z. Han, J. Hu, L. Li, J. He, “Micro-cantilever electric field sensor driven by electrostatic force,” Engineering, vol. 24, pp. 184-191, 2023.

[211] L. L. Y. Zhang, F. Zhang, “Recent advances in label-free biosensing based on nanomechanical sensors,” Sensors and Actuators B: Chemical, vol. 327, pp. 128-144, 2021.

[212] P. L. X. Xu, Y. Zhang, “Cantilever-based biosensors for biomolecule detection,” Microchimica Acta, vol. 188, no. 9, pp. 282-294, 2021.

[213] A. M. Upadhyaya, M. C. Srivastava, P. Sharan, “Integrated MOEMS based cantilever sensor for early detection of cancer,” Optik, vol. 227, p. 165321, 2021.

[214] C. A. Rowe, L. M. Tender, M. J. Feldstein, J. P. Golden, S. B. Scruggs, B. D. MacCraith, et al., “Array biosensor for simultaneous identification of bacterial, viral, and protein analytes,” Analytical Chemistry, vol. 71, no. 17, pp. 3846-3852, 1999.

[215] S. P. A. Fodor, R. P. Rava, X. C. Huang, A. C. Pease, C. P. Holmes, C. L. Adams, “Multiplexed biochemical assays with biological chips,” Nature, vol. 364, no. 6437, pp. 555-556, 1993.

[216] Y. C. L. Zhang, C. Liu, “Recent trends in plasmonic and nanomechanical biosensors for cancer diagnostics,” Biosensors and Bioelectronics, vol. 169, pp. 112-123, 2021.

[217] V. S. R. Sharma, A. Kumar, “Nanomechanical biosensors for disease diagnostics,” Nanomechanical Biosensors for Disease Diagnostics, vol. 92, no. 12, pp. 8790-8801, 2020.

[218] J. H. Lee, K. S. Hwang, J. Park, K. H. Yoon, D. S. Yoon, T. S. Kim, “Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever,” Biosensors and Bioelectronics, vol. 20, no. 10, pp. 2157-2162, 2005.

[219] K. M. Hansen, H. F. Ji, G. Wu, R. Datar, R. Cote, A. Majumdar, et al., “Cantilever-based optical deflection assay for discrimination of dna single-nucleotide mismatches,” Analytical Chemistry, vol. 73, no. 7, pp. 1567-1571, 2001.

[220] Y. Arntz, J. D. Seelig, H. P. Lang, J. Zhang, P. Hunziker, J. P. Ramseyer, et al., “Label-free protein assay based on a nanomechanical cantilever array,” Nanotechnology, vol. 14, no. 1, pp. 86-90, 2003.

[221] R. McKendry, J. Zhang, Y. Arntz, T. Strunz, M. Hegner, H. P. Lang, et al., “Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array,” in Proceedings of the National Academy of Sciences, vol. 99, no. 15, pp. 9783-9788, 2002.

[222] R. Raiteri, G. Nelles, H. J. Butt, W. Knoll, P. Skládal, “Sensing of biological substances based on the bending of microfabricated cantilevers,” Sensors and Actuators B-Chemical, vol. 61, no. 1-3, pp. 213-217, 1999.

[223] M. Alvarez, A. Calle, J. Tamayo, L. M. Lechuga, A. Abad, A. Montoya, “Development of nanomechanical biosensors for detection of the pesticide DDT,” Biosensors and Bioelectronics, vol. 18, no. 5-6, pp. 649-653, 2003.

[224] J. Van Emon. Immunoassay and Other Bioanalytical Techniques. 1st Ed. United States: CRC Press, 2016.

[225] G. Kuku, M. Altunbek, M. Culha, “Surface-enhanced Raman scattering for label-free living single cell analysis,” Analytical Chemistry, vol. 89, no. 21, pp. 11160-11166, 2017.

[226] M. A. Cooper. Label-Free Biosensors: Techniques and Applications. 1st Ed. New York: Cambridge University Press, 2009.

[227] G. Barrientos, G. Clementi, C. Trigona, M. Ouhabaz, G. M. Ludovic, D. Belharet, et al., “Lead-free LiNbO3 thick film mems kinetic cantilever beam sensor/energy harvester,” Sensors, vol. 22, no. 2, p. 559, 2022.

[228] C. Wei, X. Jing, “A comprehensive review on vibration energy harvesting: modelling and realization,” Renewable and Sustainable Energy Reviews, vol. 74, pp. 1-18, 2017.

[229] J. W. Noh, R. Anderson, S. Kim, J. Cardenas, G. P. Nordin, “In-plane photonic transduction of silicon-on-insulator microcantilevers,” Optics Express, vol. 16, no. 16, pp. 12114-12123, 2008.

[230] F. A. Costa de Oliveira, D. W. de Lima Monteiro, D. M. Colombo, “Design, modeling, characterization and analysis of a low frequency micro-fabricated piezoelectric cantilever for vibration sensing and energy harvesting applications,” Sensors and Actuators A: Physical, vol. 326, p. 112709, 2021.

[231] K. R. Rashmi, A. S. Rao, A. Jayarama, R. Pinto, “Piezoelectric P(VDF-TrFE) micro cantilevers and beams for low frequency vibration sensors and energy harvesters,” Sensors and Actuators A: Physical, vol. 295, pp. 574-585, 2019.

Downloads

Published

2025-03-30

Issue

Section

Review

How to Cite

[1]
S. Chauhan, S. K. Mishra, A. Sharma, and M. Z. Ansari, “Micro-cantilever sensor principle, design, fabrication and application: A review”, J. Mech. Eng. Sci., vol. 19, no. 1, pp. 10455–10492, Mar. 2025, doi: 10.15282/jmes.19.1.2025.4.0821.

Similar Articles

1-10 of 107

You may also start an advanced similarity search for this article.