Effect of Laser-Textured Surface of Ti6Al4V on Frictional Wear Behavior
DOI:
https://doi.org/10.15282/ijame.20.1.2023.02.0787Keywords:
Laser surface texturing, Ti6Al4V, COF, Wear rateAbstract
The need for titanium and its alloys has led to a significant increase in commercial manufacturing, although this material’s poor tribological qualities have been a drawback. The present study was to determine the effect of laser-textured surfaces to enhance Ti6Al4V surface wear performance. The sample underwent laser texturing based on pre-set parameter values at 15 W power at a laser scanning speed of 200 mm/s with a frequency of 50 kHz. The surface morphological and topological profile of laser-textured Ti6Al4V was characterized with also the surface microhardness. A comparative appraisal of wear rate (WR) and coefficient of friction (COF) for related samples of as-received Ti6Al4V and laser-textured Ti6Al4V was performed under dry and oil sliding conditions. The results revealed that the formation of oxidation due to the frictional force and plastic displacement plays a role of abrasive to the laser-textured surface and may result in increasing the COF. The wear rate of the laser-textured surface of Ti6Al4V exhibited 88.31% improvement compared to the as-received Ti6Al4V in the dry sliding wear test. It was proved that Ti6Al4V could benefit from LST to gain effectively enhanced wear performance.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Universiti Malaysia Pahang Publishing
This work is licensed under a Creative Commons Attribution 4.0 International License.