Free Vibration Analysis of a Laminated Composite Beam with Various Boundary Conditions

Authors

  • Murat Balcı, Mustafa Oğuz Nalbant, Ercan Kara and Ömer Gündoğdu

DOI:

https://doi.org/10.15282/ijame.9.2013.22.0144

Keywords:

Finite element method; Laminated composite beam; Euler-Bernoulli beam; free vibration

Abstract

This study presents a free vibration analysis of a laminated composite beam, based on the Euler-Bernoulli beam theory. A numerical model of the laminated composite beam was obtained for various boundary conditions based on different length-to-thickness ratios for a number of layers, using the finite element method. A planar beam bending element with two nodes, each having two degrees of freedom, was chosen according to Euler-Bernoulli beam theory. The natural frequencies of the laminated composite beam were obtained for each case, and presented in such a way as to display the effect of these changes on the natural frequencies. Eight natural frequencies of clamped-free, clamped-clamped (CC) and simple-simple (SS) composite beams were first obtained for different length-to-thickness ratios (Lx /h), numbers of layers, layer angles and for their different positions. It can be seen that natural frequencies decrease for all modes with increasing length-to-thickness ratio in all cases. 

Downloads

Published

2022-12-09

How to Cite

[1]
Murat Balcı, Mustafa Oğuz Nalbant, Ercan Kara and Ömer Gündoğdu, “Free Vibration Analysis of a Laminated Composite Beam with Various Boundary Conditions”, Int. J. Automot. Mech. Eng., vol. 9, pp. 1734–1746, Dec. 2022.

Issue

Section

Articles