The implementation of conjugate gradient methods for data fitting

Authors

  • N. Zull Pakkal Mathematical Sciences Studies, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA Terengganu Branch Kuala Terengganu Campus, Kuala Terengganu, Terengganu, Malaysia
  • N. Shapiee Tamhidi Centre, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan, Malaysia
  • S.F. Husin Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, Selangor, Malaysia
  • W. Khadijah School of Mathematical Sciences, College of Computing, Informatics and Media, Universiti Teknologi MARA Shah Alam Campus, Shah Alam, Selangor, Malaysia
  • N.A. Salahudin Mathematical Sciences Studies, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA Terengganu Branch Kuala Terengganu Campus, Kuala Terengganu, Terengganu, Malaysia
  • S.M. Zokri Mathematical Sciences Studies, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA Terengganu Branch Kuala Terengganu Campus, Kuala Terengganu, Terengganu, Malaysia
  • M.N. Rashidi Mathematical Sciences Studies, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA Terengganu Branch Kuala Terengganu Campus, Kuala Terengganu, Terengganu, Malaysia

DOI:

https://doi.org/10.15282/daam.v4i1.9499

Keywords:

Conjugate gradient, Iteration , CPU time , Optimization

Abstract

The conjugate gradient (CG) method is widely used to solve the unconstrained optimization problem by finding the optimal solution. This problem can be solved by an iterative method. CG method can be classified into classical, modified, spectral, three terms, and hybrid. In this research, Polak-Ribiere-Polyak (PRP), Rivaie-Mustafa-Ismail-Leong (RMIL), Nurul Hajar-Mustafa-Rivaie (NMR) and Linda-Aini-Mustafa-Rivaie (LAMR) are the four chosen methods for this comparison study. These methods are tested under the Armijo line search. There are 14 test functions with five initial points and various variables are chosen. This comparison study is tested using MatlabR2022a to evaluate iteration number and CPU time. The performance profiles of the numerical result are plotted using a Sigma plot. Then, a set of data, the ASB dividend rate is used to form a linear model. In conclusion, PRP performs better than any other method since it yields the best numerical results and is applicable for data fitting.

Downloads

Published

2023-04-30

How to Cite

NORHASLINDA ZULL PAKKAL, N. Shapiee, S.F. Husin, W. Khadijah, N.A. Salahudin, S.M. Zokri, & M.N. Rashidi. (2023). The implementation of conjugate gradient methods for data fitting. Data Analytics and Applied Mathematics (DAAM), 4(1), 23–29. https://doi.org/10.15282/daam.v4i1.9499

Issue

Section

Research Articles