Turbulent kinetic energy and self-sustaining tones: Experimental study of a rectangular impinging jet using high Speed 3D tomographic Particle Image Velocimetry

Authors

  • Hassan Hasan Assoum Department of Mechanical Engineering, Beirut Arab University, Tripoli Campus, Lebanon. Phone: +9616218400; Fax: +961 6 218400.
  • Jana Hamdi Lebanese American University, Byblos, Lebanon.
  • Mouhammad El Hassan Prince Mohamad Bin Fahed University, Saudi Arabia.
  • Kamel Abed-Meraim University of La Rochelle, LaSIE, France.
  • M. El Kheir University of La Rochelle, LaSIE, France
  • T. Mrach University of La Rochelle, LaSIE, France
  • S. El Asmar Institut Supérieur des Sciences Appliquées et Économiques, Tripoli, Lebanon.
  • Anas Sakout University of La Rochelle, LaSIE, France.

DOI:

https://doi.org/10.15282/jmes.14.1.2020.10.0495

Keywords:

Impinging jet, Tomographic-PIV, Turbulent Kinetic Energy, Self-Sustaining Tones

Abstract

Impinging jets are widely used in ventilation systems to improve the mixing and diffusion of airflows. When a rectangular jet hits a slotted plate, an acoustic disturbance can be generated and self-sustained tones produced. Few studies have looked at the Turbulent Kinetic Energy (TKE) produced by the aerodynamic field in such configurations and in the presence of self-sustaining tones. The aim of this work is to investigate the energy transfer between the aerodynamic and acoustic fields generated in a rectangular jet impinging on a slotted plate. The present paper methodology is based on experimental data measurements using 3D tomographic Particle Image Velocimetry (PIV) technique and microphones. It was found that the spectrum of the TKE for Re=5294 (configuration of self-sustained tones) is    which is smaller than that of the acoustic signal . A negative peak of correlation  is obtained between the acoustic signal and TKE for   These results may lead to conclude that the acoustic cycle should be covered by the TKE period and the two signals of both fields are in opposition of phase in order to obtain an optimal configuration for energy transfer.

References

Deepak D, Ashwin Pai K. Study on abrasive water jet drilling for graphite filled glass/epoxy laminates. Journal of Mechanical Engineering and Sciences. 2019;13(2):5126-5136.

Saeid NH, Busahmin BS, Khalid AA. Mixed convection jet impingement cooling of a moving plate. Journal of Mechanical Engineering and Sciences. 2019;13(3): 5528-5541.

Assoum HH, El Hassan M, Abed-Meraïm K, Martinuzzi R, Sakout A. Experimental analysis of the aero-acoustic coupling in a plane impinging jet on a slotted plate. Fluid Dynamics Research. 2013;45:045503.

Assoum HH, El Hassan M, Abed-Meraim K, Sakout A. The vortex dynamics and the self sustained tones in a plane jet impinging on a slotted plate. European Journal of Mechanics-B/Fluids. 2014;48:231-5.

Ziada S. Interaction of a jet-slot oscillator with a deep cavity resonator and its control. Journal of Fluids and Structures. 2001;15:831-43.

Desmarais G, Rocha J. Discrete tones in subsonic jet engine test cells. Progress in Aerospace Sciences.2018;101:49-60

Fei-Bin H, I-CheHsu, Jiann-MinHuang. Evolution of coherent structures and feedback mechanism of the plane jet impinging on a small cylinder. Journal of Sound and Vibration.2004;278: 1163-1179

Karn LS, Con JD, Richard MK.The effect of a cavity on airfoil tones. Journal of Sound and Vibration. 2014;333: 1913-1931

Didier V, Pierre B, André G. Self-sustained oscillations of a confined impinging jet. Flow, Turbulence and Combustion. 2007;78:1

Nabil K, Lyes K , Mohamed A. Flow dynamics of an impinging plane jet generating slot tones. ICEMAEP. 2016

Mrach T, Hamdi J, Abed-Meraim K, Alkheir M, Assoum H, Sakout A. Experimental analysis of the influence of the impinged plate by an impinging jet on the vortex dynamics using PIV. MATEC Web of Conferences. 2019;261:03005.

Alkheir M, Assoum H, Abed-Meraim K, Mrach T, Hamdi J, Elsoufi L, Skaf H, Sakout A. Experimental investigation of the correlation between the dynamics of an impinging jet on a slotted plate and the acoustic field generated. MATEC Web of Conferences. 2019;261:03003.

Hamdi J, Abed-Meraim K, Assoum H, Sakout A, Al-Kheir M, Mrach T, Rambault L, Cauet S, Etien E. Tomographic and Time-Resolved PIV measurement of an Impinging Jet on a Slotted Plate. MATEC Web of Conferences. 2019;261:03004.

Hamdi J, Abed-Meraim K, Assoum H, Sakout A, Al-Kheir M, Mrach T, Rambault L, Cauet S, Etien E. Volumetric Proper Orthogonal Decomposition of an impinging jet using SPIV measurement. MATEC Web of Conferences. 2019;261:03006.

Assoum H, Hamdi J, Abed-Meraïm K, El Hassan M, Ali M, Sakout A. Correlation between the acoustic field and the transverse velocity in a plane impinging jet in the presence of self-sustaining tones. Energy Procedia. 2017;139:391-397.

Anilkumar Hanchinal, Vadiraj Katti. Effect of orifice geometry and orifice to test section spacing on distribution of wall static pressure on a convex surface. Journal of Mechanical Engineering and Sciences. 2019;13(2):4835-4845.

Hamdi J, Assoum H, Abed-Meraïm K, Sakout A. Volume reconstruction of a plane jet impinging on a slotted plate using the phase averaging method. Energy Procedia. 2017;139:404-409.

Sondhauss C. Ueber die beim Ausströmen der Luft entstehenden Töne. Annalen der Physik. 1854;167:214-40.

Chanaud R, Powell A. Some experiments concerning the hole and ring tone. The Journal of the Acoustical Society of America. 1965;37:902.

Hourigan K, Welsh M, Thompson M, Stokes A. Aerodynamic sources of acoustic resonance in a duct with baffles. Journal of Fluids and Structures. 1990;4:345-70.

Assoum H, Hamdi J, Abed-Meraïm K, El Hassan M, Hammoud A, Sakout A. Experimental investigation the turbulent kinetic energy and the acoustic field in a rectangular jet impinging a slotted plate. Energy Procedia. 2017;139:398-403.

Alekseenko SV, Bilsky AV, Dulin VM, Markovich DM. Experimental study of an impinging jet with different swirl rates. International Journal of Heat and Fluid Flow. 2007;28:1340-59.

Schäfer L, Dierksheide U, Klaas M, Schröder W. Investigation of dissipation elements in a fully developed turbulent channel flow by tomographic particle-image velocimetry. Physics of Fluids. 2011;23:035106.

Schneiders JFG, Scarano F, Elsinga GE. Resolving vorticity and dissipation in a turbulent boundary layer by tomographic PTV and VIC+. Exp Fluids. 2017;58:27.

Tokgoz S, Elsinga GE, Delfos R, Westerweel J. Spatial resolution and dissipation rate estimation in Taylor--Couette flow for tomographic PIV. Exp Fluids. 2012;53:561-83.

Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW. Tomographic particle image velocimetry. Exp Fluids. 2006;41:933-47

Wieneke B. Volume self-calibration for 3D particle image velocimetry. Exp Fluids. 2008;45:549-56

Billon A, Valeau V, Sakout A. Two feedback paths for a jet-slot oscillator. Journal of Fluids and Structures.2005; 21(2):121-132.

Downloads

Published

2020-03-23

How to Cite

[1]
H. H. Assoum, “Turbulent kinetic energy and self-sustaining tones: Experimental study of a rectangular impinging jet using high Speed 3D tomographic Particle Image Velocimetry”, J. Mech. Eng. Sci., vol. 14, no. 1, pp. 6322–6333, Mar. 2020.