Determination of Optimal Ball Burnishing Parameters for Surface Roughness of Aluminum Alloy

Authors

  • D.B. Patel Mechanical Eng. Department, LDRP-ITR, Gandhinagar, India
  • T.M. Patel Mechanical Eng. Department, LDRP-ITR, Gandhinagar, India

DOI:

https://doi.org/10.15282/jmes.4.2013.11.0044

Keywords:

Burnishing process; surface roughness; number of burnishing tool passes; Taguchi method

Abstract

Burnishing is a cold-working process, which easily produces a smooth and workhardened surface through the plastic deformation of surface irregularities. In the present work, the influences of the main burnishing parameters (speed, feed, force, number of tool passes, and ball diameter) on the surface roughness are studied. It is found that the burnishing forces and the number of tool passes are the parameters that have the greatest effect on the workpiece surface during the burnishing process.

References

Chen, C. H., & Shiou, F. J. (2003). Determination of optimal ball-burnishing parameters for plastic injection moulding steel. The International Journal of Advanced Manufacturing Technology, 21(3), 177-185.

El-Axir, M. H., Othman, O. M., & Abodiena, A. M. (2008a). Improvements in out-of-roundness of inner surfaces by internal ball burnishing process. Journal of Materials Processing Technology, 196, 120-128.

El-Axir, M. H., Othman, O. M., & Abodiena, A. M. (2008b). Study on the inner surface finishing of aluminum alloy 2014 by ball burnishing process. Journal of Materials Processing Technology, 202, 435-442.

Hassan, A. M., & Al-Bsharat, A. S. (1996a). Influence of burnishing process on surface roughness, hardness, and microstructure of some non-ferrous metals. Wear, 199: 1-8.

Hassan, A. M., & Al-Bsharat, A. S. (1996b). Improvements in some properties of non-ferrous metals by the application of the ball burnishing process. Journal of Materials Processing Technology, 59, 250-256.

Hassan, A. M. (1997). The effect of ball and roller burnishing on the surface roughness and hardness of some non-ferrous metals. Journal of Materials Processing Technology, 72, 385-391.

Hassan, A. M., Al-Jalil, H. F., & Ebied, A. A. (1998). Burnishing force and number of ball passes for the optimum surface finish of brass components. Journal of Materials Processing Technology, 83, 76-179.

Hassan, A. M., & Maqableh, A. M. (2000). The effects of initial burnishing parameters on non-ferrous components. Journal of Materials Processing Technology, 102, 115-121.

Khan, M. A. R., Rahman, M. M., Kadirgama, K., Maleque, M. A., & Ishak, M. (2011). Prediction of surface roughness of Ti-6Al-4V in electrical discharge machining: a regression model. Journal of Mechanical Engineering and Sciences, 1, 16-24.

Mohamed, N. M. Z. N., & Khan, M. K. (2012). Decomposition of manufacturing processes: A review. International Journal of Automotive and Mechanical Engineering, 5, 545-560.

Najiha, M. S., Rahman, M. M., Yusoff, A. R., & Kadirgama, K. (2012). Investigation of flow behavior in minimum quantity lubrication nozzle for end milling processes. International Journal of Automotive and Mechanical Engineering, 6, 768-776.

Sagbas, A., & Kahrama, F. (2009). Determination of optimal ball burnishing parameters for surface hardness. Materials and Technology, 43(5), 271-274.

Singh, R. (2011). Process capability study of rapid casting solution for aluminum alloys using three-dimensional printing. International Journal of Automotive and Mechanical Engineering, 4: 398-405.

Singh, R. (2012). Comparison of polyjet printing and solution moulding as rapid plastic moulding solution. International Journal of Automotive and Mechanical Engineering, 6, 777-785.

Downloads

Published

2013-06-30

How to Cite

[1]
D.B. Patel and T.M. Patel, “Determination of Optimal Ball Burnishing Parameters for Surface Roughness of Aluminum Alloy”, J. Mech. Eng. Sci., vol. 4, no. 1, pp. 472–478, Jun. 2013.

Issue

Section

Article