Experiment analysis on the characteristic of empty fruit bunch, palm kernel shell, coconut shell, and rice husk for biomass boiler fuel

Authors

  • Sivabalan Kaniapan Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia. Phone: +6053688000; Fax: +6053654082
  • H. Suhaimi Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia. Phone: +6053688000; Fax: +6053654082
  • Y. Hamdan Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia. Phone: +6053688000; Fax: +6053654082
  • Jagadeesh Pasupuleti Faculty of Engineering, University Tenaga Nasional, 43000 Kajang, Selangor, Malaysia

DOI:

https://doi.org/10.15282/jmes.15.3.2021.08.0652

Keywords:

Renewable energy, proximate analysis, ultimate analysis, low bulk density, biomass chemical characterization

Abstract

It has been a necessary option for most developing countries moving towards renewable energy options as part of the Paris Agreement, which minimizes conventional energy sources’ reliance. In Malaysia, biomass is a profitable renewable option compared to solar and hydro sources for energy production due to the abundance of agricultural biomass availability for immediate use. However, most of the biomass power plants in Malaysia depend on empty fruit bunch as fuel, causing problems when there is a shortage of fuel supply and other circumstances. Variations in the fuels’ properties provide a new challenge to the power plant output; however, mixing biomass fuels can overcome the issue. Hence, this article aims to study the empty fruit bunch (EFB) with other abundant biomass fuels like “palm kernel shell (PKS),” “rice husk (RH),” and “coconut shell (CS)” for biomass boiler fuel. Therefore, the biomass’s composition and characteristics need to be known, which was done through the proximate analysis (PA), ultimate analysis (UA), and high heating value (HHV). As a result of PA, UA, and HHV, RH is the least favourable fuel due to lowest ((moisture (4.92%), volatile matter (63.20%), carbon (42.50%), hydrogen (5.42%), nitrogen (0.43%) and sulphur (0.01%)) and highest ash content (18.19%), whereas CS exhibits the most favourable option with highest (carbon (50.25%) and oxygen (42.57%)) and second highest in HHV (20.53%) compared with PKS. Thus, the experiments have provided the least and highest favourable feedstock ratios option for biomass boiler fuel application.

References

F. Behrouzi, M. Nakisa, A. Maimun, and Y. M. Ahmed, ‘Renewable energy potential in Malaysia: Hydrokinetic river/marine technology’, Renew. Sustain. Energy Rev., vol. 62, pp. 1270–1281, Sep. 2016, doi: 10.1016/j.rser.2016.05.020.

B. D. Altan and M. Atilgan, ‘An experimental and numerical study on the improvement of the performance of Savonius wind rotor’, Energy Convers. Manag., vol. 49, no. 12, pp. 3425–3432, Dec. 2008, doi: 10.1016/j.enconman.2008.08.021.

S. Bernad, A. Georgescu, S.-C. Georgescu, R. Susan-Resiga, and I. Anton, ‘Flow investigations in Achard turbine’, Proc. Rom. Acad. A, Rom. Acad., vol. 9, no. 2, p. 12, 2008.

‘Global Bioenergy Statistics 2019 World Bioenergy Association’, 2019.

H. J. Schellnhuber, W. Cramer, N. Nakicenovic, T. Wigley, and G. Yohe, Avoiding Dangerous Climate Change (Arctic Climate Impact Assessment), vol. 14, no. 1. 2006.

R. Zevenhoven and A. Beyene, ‘The relative contribution of waste heat from power plants to global warming’, Energy, vol. 36, no. 6, pp. 3754–3762, Jun. 2011, doi: 10.1016/j.energy.2010.10.010.

S. A. Sulaiman, M. Inayat, H. Basri, F. M. Guangul, and S. M. Atnaw, ‘Effect of blending ratio on temperature profile and syngas composition of woody biomass co-gasification’, J. Mech. Eng. Sci., vol. 10, no. 2, pp. 2176–2186, Sep. 2016, doi: 10.15282/jmes.10.2.2016.20.0204.

R. Avtar, S. Tripathi, A. K. Aggarwal, and P. Kumar, ‘Population-urbanization-energy nexus: A review’, Resources, vol. 8, no. 3, pp. 1–21, 2019, doi: 10.3390/resources8030136.

Eswanto and J. R. Siahaan, ‘Analysis of castel type biomass combustion chamber using candlenut shell fuel for patchouli oil purifying’, J. Mech. Eng. Sci., vol. 12, no. 2, pp. 3656–3670, 2018, doi: 10.15282/jmes.12.2.2018.12.0324.

S. Alatzas, K. Moustakas, D. Malamis, and S. Vakalis, ‘Biomass potential from agricultural waste for energetic utilization in Greece’, Energies, vol. 12, no. 6, p. 20, 2019, doi: 10.3390/en12061095.

K. Parmar, ‘Biomass- An Overview on Composition Characteristics and Properties’, IRA-International J. Appl. Sci. (ISSN 2455-4499), vol. 7, no. 1, p. 42, May 2017, doi: 10.21013/jas.v7.n1.p4.

M. S. Mia, R. A. Begum, A. C. Er, R. D. Z. R. Z. Abidin, and J. J. Pereira, ‘Burden of malaria at household level: A baseline review in the advent of climate change’, Journal of Environmental Science and Technology, vol. 5, no. 1. pp. 1–15, 2012, doi: 10.3923/jest.2012.1.15.

N. Hamzah, K. Tokimatsu, and K. Yoshikawa, ‘Solid fuel from oil palm biomass residues and municipal solid waste by hydrothermal treatment for electrical power generation in Malaysia: A review’, Sustainability (Switzerland), vol. 11, no. 4. MDPI AG, pp. 1–23, 18-Feb-2019, doi: 10.3390/su11041060.

B. B. Nyakuma, ‘Biomass energy outlook in Malaysia using functions of innovation systems’, Preprints, pp. 1–24, Feb. 2018, doi: 10.20944/PREPRINTS201802.0158.V1.

Salman Zafar, ‘Agricultural Biomass in Malaysia | BioEnergy Consult’, Bioenergy Consult, 08-Nov-2019. [Online]. Available: https://www.bioenergyconsult.com/agricultural-biomass-in-malaysia/. [Accessed: 25-Apr-2020].

W. Griffin, J. Michalek, H. Matthews, and M. Hassan, ‘Availability of biomass residues for co-firing in peninsular Malaysia: Implications for cost and GHG emissions in the electricity sector’, Energies, vol. 7, no. 2, pp. 804–823, Feb. 2014, doi: 10.3390/en7020804.

Nurhidayati Abd Aziz and Leon Kin Mun, ‘Malaysia’s biomass potential’, BiomassSP:BE-Sustainable Magazine, p. 21, Apr-2012.

I. A. I. Cora Bulmău,(Gheorghe), Adrian Badea, Diana Cocârţă, ‘Applications of the thermochemical treatments in the sustainable development contex’, Present Environ. Sustain. Dev., vol. 5, no. 1, pp. 121–130, 2011.

X. Zhang and R. C. Brown, ‘Introduction to thermochemical processing of biomass into fuels, chemicals, and power’, in Thermochemical Processing of Biomass, 2019, pp. 1–16.

S. N. Naik, V. V Goud, P. K. Rout, and A. K. Dalai, ‘Production of first and second generation biofuels: A comprehensive review’, Elsevier, vol. 14, pp. 578–597, 2010, doi: 10.1016/j.rser.2009.10.003.

B. Saletnik, G. Zagula, M. Bajcar, M. Czernicka, and C. Puchalski, ‘Biochar and Biomass ash as a soil Ameliorant: The effect on selected soil properties and yield of giant Miscanthus (Miscanthus x giganteus)’, mdpi.com, vol. 11, no. 10, p. 2535, Sep. 2018, doi: 10.3390/en11102535.

V. Chaloupková, T. Ivanova, O. Ekrt, A. Kabutey, and D. Herák, ‘Determination of particle size and distribution through image-based macroscopic analysis of the structure of Biomass Briquettes’, Energies, vol. 11, no. 2, p. 331, Feb. 2018, doi: 10.3390/en11020331.

B. Patel, ‘Biomass characterization and its use as solid fuel for combustion’, Iran. J. Energy Environ., vol. 3, no. 2, pp. 123–128, 2012, doi: 10.5829/idosi.ijee.2012.03.02.0071.

S. Wang, X. Guo, K. Wang, and Z. Luo, ‘Influence of the interaction of components on the pyrolysis behavior of biomass’, J. Anal. Appl. Pyrolysis, vol. 91, no. 1, pp. 183–189, 2011, doi: 10.1016/j.jaap.2011.02.006.

B. C. L. Fui, ‘Studies of syngas cleaning technologies suitable for power generation from Biomass oil palm shells’, Curtin University, 2011.

V. Pasangulapati, ‘Devolatilization characteristics of cellulose, hemicellulose, lignin, and the selected biomass during thermochemical gasification: Experiment and modeling studies’, Oklahoma State University, 2012.

D. Mohan, C. U. Pittman, and P. H. Steele, ‘Pyrolysis of wood/biomass for bio-oil: A critical review’, Energy and Fuels, vol. 20, no. 3, pp. 848–889, May 2006, doi: 10.1021/ef0502397.

M. Balat, M. Balat, E. Kirtay, and H. Balat, ‘Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: Gasification systems’, Energy Convers. Manag., vol. 50, no. 12, pp. 3158–3168, Dec. 2009, doi: 10.1016/j.enconman.2009.08.013.

P. Fatehi, ‘Production of biofuels from cellulose of woody biomass’, in Cellulose - Biomass Conversion, InTech, 2013, pp. 46–74.

R. C. Brown, ‘Introduction to thermochemical processing of biomass into fuels, chemicals, and power’, in Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power, 2011, pp. 1–12, doi: 10.1002/9781119990840.ch1.

D. Tarasov, M. Leitch, and P. Fatehi, ‘Lignin-carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review’, Biotechnology for Biofuels, vol. 11, no. 1. BioMed Central Ltd., 29-Sep-2018, doi: 10.1186/s13068-018-1262-1.

F. X. Collard and J. Blin, ‘A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin’, Renewable and Sustainable Energy Reviews, vol. 38. Elsevier Ltd, pp. 594–608, 2014, doi: 10.1016/j.rser.2014.06.013.

M. Balat, ‘Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review’, Energy Convers. Manag., vol. 52, no. 2, pp. 858–875, Feb. 2011, doi: 10.1016/j.enconman.2010.08.013.

G. Montero et al., ‘Higher heating value determination of wheat straw from Baja California, Mexico’, Energy, vol. 109, pp. 612–619, Aug. 2016, doi: 10.1016/j.energy.2016.05.011.

J. Parikh, S. A. Channiwala, and G. K. Ghosal, ‘A correlation for calculating elemental composition from proximate analysis of biomass materials’, Fuel, vol. 86, no. 12–13, pp. 1710–1719, Aug. 2007, doi: 10.1016/j.fuel.2006.12.029.

G. Zając, J. Szyszlak-Bargłowicz, W. Gołębiowski, and M. Szczepanik, ‘Chemical characteristics of biomass ashes’, Energies, vol. 11, no. 11, pp. 1–15, 2018, doi: 10.3390/en11112885.

X. Wang et al., ‘Experimental investigation on biomass co-firing in a 300 MW pulverized coal-fired utility furnace in China’, Proc. Combust. Inst., vol. 33, no. 2, pp. 2725–2733, 2011, doi: 10.1016/j.proci.2010.06.055.

S. Hosseinpour, M. Aghbashlo, M. Tabatabaei, and M. Mehrpooya, ‘Estimation of biomass higher heating value (HHV) based on the proximate analysis by using iterative neural network-adapted partial least squares (INNPLS)’, Energy, vol. 138, pp. 473–479, 2017, doi: 10.1016/j.energy.2017.07.075.

M. Z. Stummann et al., ‘Deactivation of a CoMo catalyst during Catalytic Hydropyrolysis of biomass. Part 1. Product distribution and composition’, Energy and Fuels, vol. 33, no. 12, pp. 12374–12386, Dec. 2019, doi: 10.1021/acs.energyfuels.9b02523.

R. Saidur, E. A. Abdelaziz, A. Demirbas, M. S. Hossain, and S. Mekhilef, ‘A review on biomass as a fuel for boilers’, Renewable and Sustainable Energy Reviews, vol. 15, no. 5. pp. 2262–2289, Jun-2011, doi: 10.1016/j.rser.2011.02.015.

M. C. Maguyon-Detras, M. V. P. Migo, N. Van Hung, and M. Gummert, ‘Thermochemical conversion of rice straw’, in Sustainable Rice Straw Management, Springer International Publishing, 2020, pp. 43–64.

M. V. Gil, D. Casal, C. Pevida, J. J. Pis, and F. Rubiera, ‘Thermal behaviour and kinetics of coal/biomass blends during co-combustion’, Bioresour. Technol., vol. 101, no. 14, pp. 5601–5608, Jul. 2010, doi: 10.1016/j.biortech.2010.02.008.

M. Varol, A. T. Atimtay, B. Bay, and H. Olgun, ‘Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis’, Thermochim. Acta, vol. 510, no. 1–2, pp. 195–201, Oct. 2010, doi: 10.1016/j.tca.2010.07.014.

M. Poletto, ‘Assessment of the thermal behavior of lignins from softwood and hardwood species’, Maderas Cienc. y Tecnol., vol. 19, no. 1, pp. 63–74, 2017, doi: 10.4067/S0718-221X2017005000006.

J. W. Cumming and J. McLaughlin, ‘The thermogravimetric behaviour of coal’, Thermochim. Acta, vol. 57, no. 3, pp. 253–272, Sep. 1982, doi: 10.1016/0040-6031(82)80037-3.

Q. Yi et al., ‘Thermogravimetric analysis of co-combustion of biomass and biochar’, J. Therm. Anal. Calorim., vol. 112, no. 3, pp. 1475–1479, Jun. 2013, doi: 10.1007/s10973-012-2744-1.

S. H. Kong, S. K. Loh, R. T. Bachmann, S. A. Rahim, and J. Salimon, ‘Biochar from oil palm biomass: A review of its potential and challenges’, Renewable and Sustainable Energy Reviews, vol. 39. Elsevier Ltd, pp. 729–739, 01-Nov-2014, doi: 10.1016/j.rser.2014.07.107.

S. Palamae, P. Dechatiwongse, W. Choorit, Y. Chisti, and P. Prasertsan, ‘Cellulose and hemicellulose recovery from oil palm empty fruit bunch (EFB) fibers and production of sugars from the fibers’, Carbohydr. Polym., vol. 155, pp. 491–497, Jan. 2017, doi: 10.1016/j.carbpol.2016.09.004.

E. C. Okoroigwe, C. M. Saffron, and P. D. Kamdem, ‘Characterization of palm kernel shell for materials reinforcement and water treatment’, vol. 5, no. 1, pp. 1–6, 2014, doi: 10.5897/JCEMS2014.0172.

N. Arena, J. Lee, and R. Clift, ‘Life Cycle Assessment of activated carbon production from coconut shells’, J. Clean. Prod., vol. 125, pp. 68–77, Jul. 2016, doi: 10.1016/j.jclepro.2016.03.073.

T. Nussbaumer, ‘Combustion and co-combustion of biomass: Fundamentals, technologies, and primary measures for emission reduction †’, ACS Publ., vol. 17, no. 6, pp. 1510–1521, Nov. 2003, doi: 10.1021/ef030031q.

Downloads

Published

2021-09-19 — Updated on 2021-09-19

Versions

How to Cite

[1]
S. KANIAPAN, H. Suhaimi, Y. Hamdan, and J. Pasupuleti, “Experiment analysis on the characteristic of empty fruit bunch, palm kernel shell, coconut shell, and rice husk for biomass boiler fuel”, J. Mech. Eng. Sci., vol. 15, no. 3, pp. 8300–8309, Sep. 2021.

Similar Articles

<< < 47 48 49 50 51 52 53 54 55 > >> 

You may also start an advanced similarity search for this article.