Optimization of TiO2 nanowires synthesis using hydrothermal method for hydrogen production

Authors

  • I. Kustiningsih Chemical Engineering Department, Faculty of Engineering, Sultan Ageng Tirtayasa University, Serang, 42118, Indonesia
  • Sutinah Chemical Engineering Department, Faculty of Engineering, Sultan Ageng Tirtayasa University, Serang, 42118, Indonesia
  • M. Stefirizky Chemical Engineering Department, Faculty of Engineering, Sultan Ageng Tirtayasa University, Serang, 42118, Indonesia
  • Slamet Chemical Engineering Department, Faculty of Engineering, University of Indonesia, Depok, 16424, Indonesia
  • W. W. Purwanto Chemical Engineering Department, Faculty of Engineering, University of Indonesia, Depok, 16424, Indonesia

DOI:

https://doi.org/10.15282/jmes.12.3.2018.9.0340

Keywords:

TiO2, nanowires, photocatalytic, hydrogen, Sonication, Hydrothermal

Abstract

Effects of sonication and hydrothermal treatment time on TiO2 nanowires (TNWs) formation have been investigated. Sonication of TiO2 P25 sol was performed using sonicator water bath Cole for 0.5, 1 and 2 hours followed by hydrothermal treatment. The hydrothermal treatment was carried out in a teflon lined stainless steel autoclave for 12, 15 and 24 hours. The samples were characterized by means of Scanning Electron Microscope (SEM), X-ray powder diffractometer (XRD), UV-vis diffuse and reflectance spectroscopy (UV-vis DRS). The specific surface area of each sample was determined by the BET nitrogen gas adsorption/desorption method. The photocatalytic activity of TNWs was evaluated with photocatalytic H2 evolution from aqueous methanol solution. The result showed that the best TNWs was obtained at 1 hr sonication followed by hydrothermal process for 12 hours. By using this catalyst hydrogen production reached 82 μmol after 5h while using TiO2 P25 could only reach 23 μmol.

References

Tan SS, Zou L, Hu E. Photosynthesis of hydrogen and methane as key components for clean energy system. Science and Technology of Advanced Materials. 2007;8:89-92.

Sikander U, Sufian S, KuShaari K, Chong FK. Effects of catalytic bed position of hydrogen production by methane decomposition. Journal of Mechanical Engineering and Science.2018;12:3313-3320.

Fujishima A, Honda K. Electrochemical of water at a semiconductor electrode. Nature. 1972;238:37.

Slamet, Ratnawati, Gunlazuardi J, Dewi, EL, Enhanced photocatalytic activity of Pt deposited on titania nanotube arrays for the hydrogen production with glycerol as a sacrificial agent, International Journal Hydrogen Energy. 2017;42(32):24014-24025.

Sun Y, Wang G, Yan K. TiO2 nanotubes for hydrogen generation by photocatalytic water splitting in a two-compartment Photoelectrochemical cell. International Journal Hydrogen Energy. 2011;36:15502-15508.

Zhang Y, Han C, Zhang G, Dionysiou DD, Nadagouda, MN. PEG assisted synthesis of crystal TiO2 nanowires with high specific surface area for enhanced photocatalytic degradation of atrazine. Chemical Engineering Journal. 2015;268:170-179.

Costa LL, Prado AGS. TiO2 nanotubes as recyclable catalyst for efficient photocatalytic degradation of indigo carmine dye. Journal Photochemistry Photobiology A. 2009;201:45-49.

Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Gratzel M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells, Journal of the American Chemical Society. 2012;134:17396-17399.

Das TK, Ilaiyaraja P, Sudakar C. Template assisted Nano porous TiO2 nanoparticles: The effect of oxygen vacancy defects on photovoltaic performance of DSSC and QDSSC. Solar Energy. 2018;159:920-929.

Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental Application of Semiconductor Photocatalysis. Chemical Reviews. 1995;95:69-96.

Zhao JC, Wu TX, Wu KQ, Oikawa K, Hidaka H, Serpone N, Photoassisted degradation of Dye 3 Pollutants degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: Evidence for the need of substrate adsorption on TiO2 particles. Environmental Science & Technology. 1998;32: 2394-2400.

Yetim T. Corrosion behaviour of Ag-doped TiO2 coatings on commercially pure Titanium in simulated body fluid solution. Journal of Bionic Engineering. 2016;13(2):397-405.

He X, Zhang G, Wang X, Hang R, Huang X, Qin L, Tang B, Zhang X. Biocompatibility, corrosion resistance and antibacterial activity of TiO2/CuO coating on Titanium. Ceramics International. 2017; 43(18):16185-16195.

Chen XB and Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modification and applications. Chemical Reviews. 2007;107:2891-2959

Jitputti J, Yoshikazu S, Yoshikawa S. Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution. Catalysis Communications. 2007;9:1265-1271.

Kustiningsih I, Slamet, Purwanto WW, Synthesis of Titania Nanotubes and Titania Nanowires by Combination Sonication hydrothermal Treatment and their Photocatalytic Activity for Hydrogen Production. International Journal of Technology. 2014;5:133-141.

Yang X, Liang H, Wu L, Zhang J, Huang Y, Li X, High performance carbon/silica co-decorated TiO2 nanotubes for visible-light driven water splitting. Materials Research Bulletin. 2017;93:162-169.

Ismail S, Lockman Z, Kian TW. Formation and photoe;ectrochemical properties of TiO2 nanotubes arrays in fluowrinatedorganic electrolyte, Journal of Mechanical Engineering and Science. 2017;11:3129-3136.

Liu Z, Zhang J, Hong T, Zheng X, Guo K, Liu Z. High-efficiency nanorod-nanosheet arrays sandwich photoelectrode for photoelectrochemicl water splitting. International Journal Hydrogen Energy. 2016;41(31):13359-13367.

Subramanian A, Pan Z, Li H, Zhou L, Li W, Qiu Y, Xu Y, Hou Y, Muzi C, Zhang Y. Synergistic promotion of photoelectrochemical water splitting efficiendy of TiO2 nanorods using metal-semiconducting nanoparticles. Applied Surface Science. 2017;420:631-637

Xu F, Mei J, Zheng M, Bai D, Wu D, Gao Z, Jiang K. Au nanoparticles modified branched TiO2 nanorod array arranged with ultrathin nanorods for enhanced photoelectrochemical water splitting. Journal of Alloys and Compounds. 2017;693:1124-1132.

Camposeco R, Castillo S, Navarrete J, Gomez R, Synthesis, characterization and photocatalytic activity of TiO2 nanostructures: Nanotubes, nanofibers, nanowires and nanoparticles. Chemistry of Materials. 2016;266:90-101.

Ou HH and Lo SL. Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification and application. Separation and Purification Technology. 2007;58:179-191.

Kustiningsih I, Slamet, Purwanto WW, Synthesis of TiO2 nanotubes by using combination of sonication and hydrothermal treatment and their photocatalytic activity for hydrogen evolution. Reaktor, 2015:15;205-212.

Maheswari D and Venkatachalam P. Fabrication and characterization of TiO2 nanotubes by hydrothermal method in the design of DSSC. Applied Solar Energy. 2013;49:93-97.

Bavykin DV, Friedrich JM, Walsh FC. Protonated titanates and TiO2 nanostructured materials: synthesis, properties and application. Advanced Materials. 2006;18: 2807-2824.

Borbón-Nuñez HA, Dominguez D, Muñoz-Muñoz F, Lopez J, Romo-Herrera G, Tiznad H. Fabrication of hollow TiO2 nanotubes through atomic layer deposition and MWCNT templates. Powder Technology, 2017;308: 249-257.

Kasuga T, Hiramatsu M, Hoson A, Sekino T, Nihara K. Formation of titanium oxide nanotubes. Langmuir.1998;14:3160-3163.

Zwilling V, Aucouturier M, Darque-Ceretti E. Anodic oxidation of titanium and TA6V alloy in chromic media, An electrochemical approach, Electrochimica Acta. 1999; 45:921.

Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC. Titanium oxide nanotube arrays prepared by anodic oxidation, Journal of Material Research. 2001;16:3331.

Lin T, Liao M, Zhao S, Fan H, Zhu X. Anodic TiO2 nanotubes produced under atmospheric pressure and in vacum conditions. Ceramics International, 2018;44(2):1764-1770.

Dong Z, Ding D, Lia T, Ning C. Facile fabrication of Si-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical hydrogen generation. Applied Surface Science. 2018;436:125-133.

Wang FM, Shi ZS, Gong F, Jiu JT, Adachi M, Morphology control of anatase TiO2 by surfactant-assisted hydrothermal method. Chinese Journal of Chemical Engineering.2007;15:754-759.

Yun G, Song YG, Ahn BE, Lee SK, Heo J, Ahn KS, Kang SH, Beneficial surface passivation of hydrothermally grown TiO2 nanowires for solar water oxidation. Applied Surface Science. 2016;366:561-566

Weller H. Colloidal semiconductor Q-particles chemistry in the transition region between solid state and molecules. Angewandte Chemie International Special Edition in English. 1993;32:41-53.

Yoong LS, Chong FK, Duta BK, Development of Copper and doped TiO2 photocatalyst for hydrogen production under visible light. Energy. 2009;34:1652-1661.

Viriya-Empikul N, Charinpanitkul T, Sano N, Faungnawakij K, Tanthapanichakoon W. Effect of reaction temperature and sonication pretreatment in the hydrothermal process on the morphology of titanate nano-structure. Journal of Chemical Engineering of Japan. 2009; s234-s237.

Yuan ZY and Su BL. Titanium Oxide nanotubes, nanofibers and nanowires. Colloid Surface A. 2004;241:173-183.

Yu J, Yu H, Cheng B, Trapalis C. Effect of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes. Journal of Molecular Catalyst. A. 2006;249:135-142.

Sun XM and Li YD. Synthesis and characterization of ion exchangeable titanate nanotubes. Chemistry- A European Journal. 2003;9:2229.

Pang YL, Abdullah AZ, Bhatia S. Effect of annealing temperature on the characteristics, sonocatalytic activity and reusability of nanotubes TiO2 in the degradation of Rhodamine B. Applied Catalysis B: Environmental. 2010;100:393-402.

Yu J, Yu H, Cheng B, Trapalis C. Effect of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes, Journal of Molecular Catalyst A. 2006;249:135-142.

Bavykin DV, Gordeev SN, Moskalenko AV, Lapkin AA, Walsh FC. Apparent two-dimensional behavior of TiO2 nanotubes revealed by light absorption and luminescence. The Journal of Physical Chemistry B. 2005;109:8565-8569.

Downloads

Published

2018-09-30

How to Cite

[1]
I. Kustiningsih, Sutinah, M. Stefirizky, Slamet, and W. W. Purwanto, “Optimization of TiO2 nanowires synthesis using hydrothermal method for hydrogen production”, J. Mech. Eng. Sci., vol. 12, no. 3, pp. 3876–3887, Sep. 2018.

Similar Articles

<< < 1 2 3 

You may also start an advanced similarity search for this article.