Artificial Neural Network-Based Fault Detection System with Residual Analysis Approach on Centrifugal Pump: A Case Study

Authors

  • Katherin Indriawati Department of Engineering Physics, Sepuluh Nopember Institute of Technology, 60111 Indonesia
  • Gabriel Fransisco Yugoputra Department of Engineering Physics, Sepuluh Nopember Institute of Technology, 60111 Indonesia
  • Noviarizqoh Nurul Habibah Department of Engineering Physics, Sepuluh Nopember Institute of Technology, 60111 Indonesia
  • Risma Yudhanto Saka Indonesia Pangkah Limited, 61151 Indonesia

DOI:

https://doi.org/10.15282/ijame.20.1.2023.10.0795

Keywords:

Classifier, Data Bank, Artificial neural network, Residual analysis, Centrifugal pump

Abstract

Centrifugal pump is an instrument that is widely used in industry and has become the main driving component. A detection system is often needed to prevent damage to these pumps because they can interfere with the overall system performance. Therefore, this study discussed the development of a fault detection system for two centrifugal pump units, namely the Medium Pressure Oil Pump (MPOP) and the Water Injection Pump (WIP). In detecting the operating conditions of the pump, it was used a residual feature extraction technique in the time domain with a statistical approach. Residual was generated by using three sub-systems of a pumping system. Each sub-system was modeled using an artificial neural network with feedforward-back propagation architecture. Based on the feature values, the classifier was designed to classify pump conditions. Then the proposed fault detection system was applied in a condition monitoring system scheme. The test results (using data from the field) show that the fault detection system has an accuracy of 91.67% for MPOP and 94.8% for WIP cases. Meanwhile, the fault detection system has an accuracy above 99% during online monitoring simulations.

Downloads

Published

2023-04-07

How to Cite

[1]
K. Indriawati, G. F. Yugoputra, N. N. Habibah, and R. Yudhanto, “Artificial Neural Network-Based Fault Detection System with Residual Analysis Approach on Centrifugal Pump: A Case Study”, Int. J. Automot. Mech. Eng., vol. 20, no. 1, pp. 10285–10297, Apr. 2023.

Issue

Section

Articles

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.