Implementation of Fuzzy Logic Controller for Pressure Sensor Calibration Chamber
DOI:
https://doi.org/10.15282/ijame.18.2.2021.20.0676Keywords:
Meteorology; Atmospheric pressure; Fuzzy logic; CalibrationAbstract
Atmospheric pressure is a weather element that must be observed in the field of meteorology. Electronic barometers, aneroid barometers, mercury barometers are generally instruments for atmospheric pressure measurement. The barometer must be calibrated periodically to ensure the performance of the instrument. To achieve the best target uncertainty during calibration, besides using an accurate primary standard barometer, a stable pressure controller is also needed. Pressure calibration media using a pressurised test chamber is more beneficial due to its capability to accommodate all types of pressure sensors. However, pressurise test chamber still requires an operator to control and stabilise pressure inside the test chamber. In this study, fuzzy logic has been programmed into a microcontroller to control the solenoid valve and vacuum pump for regulating air pressure inside a pressurised test chamber automatically. Fuzzy logic changes the solenoid valve states periodically by varying the opening and closing times. The final result of this study is a comparison between the calibration results using pressure controller with fuzzy logic and without fuzzy logic with the same primary standard and unit under test. The result of expanded uncertainty without a fuzzy logic controller is 13.06 hectopascal. Meanwhile, the pressure calibration process using fuzzy logic to control pressure in pressurised test chamber achieve 0.09 hectopascal of expanded uncertainty in 1000 hectopascal pressure value with coverage factor, k=2, and confidence level of no less than 95 %.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 M. Ridwan, T. Taryo
This work is licensed under a Creative Commons Attribution 4.0 International License.