Some properties of compatible action graph

Authors

  • M.K. Shahoodh Ministry of Education, AL-Ramadi Education, Al-idrisi Secondary School for Girls, Baghdad, Iraq
  • M.S. Mohamad Centre for Mathematical Sciences, College of Computing and Applied Sciences, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
  • Y. Yusof Centre for Mathematical Sciences, College of Computing and Applied Sciences, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
  • S.A. Sulaiman Centre for Mathematical Sciences, College of Computing and Applied Sciences, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia

DOI:

https://doi.org/10.15282/daam.v2i1.5902

Keywords:

Graph theory, Number theory, Cyclic groups, Compatible actions, Nonabelian tensor product

Abstract

In this paper, the compatible action graph for the finite cyclic groups of p-power order has been considered. The purpose of this study is to introduce some properties of the compatible action graph for finite p-groups.

References

Kelarev AV, Quinn SJ. Directed graphs and combinatorial properties of semigroups. Journal of Algebra. 2002 May 1;251(1):16-26.

Alireza D, Ahmad E, Abbas J. Some results on the power graphs of finite groups. ScienceAsia. 2015 Feb 1;41(1):73-8.

Erfanian A, Khashyarmanesh K, Nafar K. Non-commuting graphs of rings. Discrete Mathematics, Algorithms and Applications. 2015 Sep 26;7(03):1550027.

Erfanian A, Mansoori F, Tolue B. Generalized conjugate graph. Georgian Mathematical Journal. 2015 Mar 1;22(1):37-44.

Rajkumar R, Devi P. Coprime graph of subgroups of a group. arXiv preprint arXiv:1510.00129. 2015 Oct 1.‏

Mohammadian A, Erfanian A. On the nilpotent conjugacy class graph of groups. Note di Matematica. 2018 Feb 15;37(2):77-90.

Selvakumar K, Subajini M. Classification of groups with toroidal coprime graphs. Australas. J. Combin. 2017 Jan 1;69(2):174-83.

Brown R, Johnson DL, Robertson E. Some computations of non-abelian tensor products of groups. Journal of Algebra. 1987 Nov 1;111(1):177-202.

Shahoodh MK, Mohamad MS, Yusof Y, Sulaiman SA. Compatible action graph for finite cyclic groups of p-power order. In4th International Conference on Science, Engineering & Environment (SEE), Nagoya, Japan 2018.

Sulaiman SA, Mohamed MS, Yusof Y, Shahoodh MK, Hamid HA. The compatible action graphs for finite cyclic 2-groups. Data Analytics and Applied Mathematics (DAAM). 2020:23-30.

Wilson RJ. Introduction to graph theory. Pearson Education India; 1979.

Rosen KH, Krithivasan K. Discrete mathematics and its applications. New York: McGraw-Hill; 1999 Jan.

Visscher MP. On the nonabelian tensor product of groups. State University of New York at Binghamton; 1998.

Downloads

Published

2021-06-29

How to Cite

shahoodh, mohammed khalid, M.S. Mohamad, Yusof, Y., & S.A. Sulaiman. (2021). Some properties of compatible action graph. Data Analytics and Applied Mathematics (DAAM), 2(1), 20–27. https://doi.org/10.15282/daam.v2i1.5902

Issue

Section

Research Articles