Improving Images in Turbid Water through Enhanced Color Correction and Particle Swarm-Intelligence Fusion (CCPF)

Authors

  • Syafiq Qhushairy Syamsul Amri Faculty of Manufacturing and Mechatronic Engineering Technology, Universiti Malaysia Pahang, 26600 Pahang, Malaysia.
  • Ahmad Shahrizan Abdul Ghani Faculty of Manufacturing and Mechatronic Engineering Technology, Universiti Malaysia Pahang, 26600 Pahang, Malaysia.
  • Mohd Aiman Syahmi Kamarul Baharin Faculty of Manufacturing and Mechatronic Engineering Technology, Universiti Malaysia Pahang, 26600 Pahang, Malaysia.
  • Mohd Yazid Abu Faculty of Manufacturing and Mechatronic Engineering Technology, Universiti Malaysia Pahang, 26600 Pahang, Malaysia.
  • Nagata Fusaomi Sanyo-Onoda City University, Daigakudori, Sanyoonoda, Yamaguchi 756-0884, Japan.

DOI:

https://doi.org/10.15282/mekatronika.v5i1.9085

Keywords:

Color correction, White balance, Image matching, Contrast adjustment, Particle swarm intelligence

Abstract

When light travels through a water medium, selective attenuation and scattering have a profound impact on the underwater image. These limitations reduce image quality and impede the ability to perform visual tasks. The suggested integrated color correction with intelligence fusion of particle swarm technique (CCPF) is designed with four phases. The first phase presents a novel way to make improvement on underwater color cast. Limit the improvement to only red color channel. In the second phase, an image is then neutralized from the original image by brightness reconstruction technique resulting in enhancing the image contrast. Next, the mean adjustment based on particle swarm intelligence is implemented to improve the image detail. With the swarm intelligence method, the mean values of inferior color channels are shifted to be close to the mean value of a good color channel. Lastly, a fusion between the brightness reconstructed histogram and modified mean particle swarm intelligence histogram is applied to balance the image color. Analysis of underwater images taken in different depths shows that the proposed CCPF method improves the quality of the output image in terms of neutralizing effectiveness and details accuracy, consequently, significantly outperforming the other state-of-the-art methods. The proposed CCPF approach produces highest average entropy value of 7.823 and average UIQM value of 6.287.

Downloads

Published

2023-03-28

How to Cite

[1]
S. Q. Syamsul Amri, A. S. Abdul Ghani, M. A. S. . Kamarul Baharin, M. Y. . Abu, and N. . Fusaomi, “Improving Images in Turbid Water through Enhanced Color Correction and Particle Swarm-Intelligence Fusion (CCPF)”, Mekatronika: J. Intell. Manuf. Mechatron., vol. 5, no. 1, pp. 18–35, Mar. 2023.

Issue

Section

Original Article