Machinability Study in Turning of Ti-6Al-4V under CO2-based Vortex Tube Cooling System
DOI:
https://doi.org/10.15282/ijame.20.1.2023.11.0796Keywords:
Vortex tube, CO2 gas cooling, Compressed air cooling, Ti-6Al-4V, MachinabilityAbstract
The study on the machinability of titanium alloys provides new ways to minimize the difficulty levels of machining the alloys due to substantial heat accumulation. To improve machinability, pivotal factors such as heat accumulation and cutting temperature must be regulated. In this study, a turning operation was performed on Ti-6Al-4V and the cutting temperature was reduced by supplying cooled CO2 gas through a vortex tube connected with two nozzles. Variations in cutting force, cutting temperature, and surface roughness with cutting speed, feed, and depth of cut were recorded. Subsequently, responses were compared for single nozzle vortex tube, dry, and compressed air environments at different cutting speeds. Cutting force and surface roughness followed a similar trend which increased with decreasing speed, and increasing feed and depth of cut. The cutting temperature increased with all three variables. The proposed cooling system provided better results in terms of cutting temperature and surface roughness, while a marginally higher cutting force was observed compared to dry cutting
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Universiti Malaysia Pahang Publishing
This work is licensed under a Creative Commons Attribution 4.0 International License.