A Method to Improve Reliability of Gearbox Fault Detection with Artificial Neural Networks

Authors

  • P.V. Srihari
  • K. Govindarajulu
  • K. Ramachandra

DOI:

https://doi.org/10.15282/ijame.2.2010.10.0018

Keywords:

Gearbox fault diagnosis, Vibration signal, artificial neural networks, Reliability.

Abstract

Fault diagnosis of gearboxes plays an important role in increasing the availability of machinery in condition monitoring. An effort has been made in this work to develop an artificial neural networks (ANN) based fault detection system to increase reliability. Two prominent fault conditions in gears, worn-out and broken teeth, are simulated and five feature parameters are extracted based on vibration signals which are used as input features to the ANN based fault detection system developed in MATLAB, a three layered feed forward network using a back propagation algorithm. This ANN system has been trained with 30 sets of data and tested with 10 sets of data. The learning rate and number of hidden layer neurons are varied individually and the optimal training parameters are found based on the number of epochs. Among the five different learning rates used the 0.15 is deduced to be optimal one and at that learning rate the number of hidden layer neurons of 9 was the optimal one out of the three values considered. Then keeping the training parameters fixed, the number of hidden layers is varied by comparing the performance of the networks and results show the two and three hidden layers have the best detection accuracy.

Downloads

Published

2022-12-09

How to Cite

[1]
P.V. Srihari, K. Govindarajulu, and K. Ramachandra, “ A Method to Improve Reliability of Gearbox Fault Detection with Artificial Neural Networks”, Int. J. Automot. Mech. Eng., vol. 2, pp. 221–230, Dec. 2022.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.