Processing and properties of high density polyethylene/date palm fiber composites prepared by a laboratory mixing extruder

Authors

  • Achmad Chafidz 1Chemical Engineering Department, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia
  • Muhammad Rizal PT Petrokimia Gresik, Jalan Jenderal Akhmad Yani, Gresik 61119, Indonesia
  • Faisal RM 1Chemical Engineering Department, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia
  • Mujtahid Kaavessina Chemical Engineering Department, Universitas Sebelas Maret, Surakarta 57126, Indonesia
  • Dhoni Hartanto Chemical Engineering Department, Universitas Negeri Semarang, Semarang 50229, Indonesia
  • S. M. AlZahrani Chemical Engineering Department, King Saud University, P.O. BOX 800, Riyadh 11421, Saudi Arabia

DOI:

https://doi.org/10.15282/jmes.12.3.2018.2.0333

Keywords:

High density polyethylene, date palm fiber, composites, melt blending, thermal properties, rheological properties

Abstract

In this work, “green” composites made from High Density Polyethylene (HDPE) and natural fiber based date palm fiber have been prepared and studied. The effects of different loadings of date palm fibers (DPF) on the morphological, thermal and melt rheological properties of the composites have been investigated. Morphological investigation showed that the fibers were evenly dispersed in HDPE matrix at all DPF loadings. Additionally, the results of differential scanning calorimetry (DSC) analysis revealed that the addition of the DPF in the HDPE matrix has slightly increased the crystallization temperature (ΔT = ± 1.33 oC). However, the crystallinity index, Xc of the composites at all DPF loadings were lower than the neat HDPE. The decrease of Xc was approximately 10.5 – 14 %. Differential scanning calorimetry (DSC) analysis results revealed that the addition of the DPF into the HDPE matrix has increased the crystallization temperature. However, the crystallinity index of the composites at all DPF loadings were lower than the neat HDPE. In term of melt rheological analysis, the complex viscosity of the composites were all higher than the HDPE matrix and increased with the increase of DPF loadings, which was due to the restriction of the HDPE chain segment movements as the amount of DPF increased.

Downloads

Published

2018-09-30

How to Cite

[1]
A. Chafidz, M. Rizal, F. RM, M. Kaavessina, D. Hartanto, and S. M. AlZahrani, “Processing and properties of high density polyethylene/date palm fiber composites prepared by a laboratory mixing extruder”, J. Mech. Eng. Sci., vol. 12, no. 3, pp. 3771–3785, Sep. 2018.