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INTRODUCTION 
The research on humanoid biped robot legs is important because biped robots are widely used in industrial settings to 

handle risky tasks. In the event of an accident, injuries to humans can be minimized and safety levels can be maximized. 
Employers are particularly concerned with the stability control of robot legs to increase efficiency without human 
supervision. Additionally, studying biped robots allows for an understanding of how they can walk on a trajectory with 
stability control using different methods, and for the construction of biped robot legs in MATLAB simulations to obtain 
response feedback with completed algorithms [1], [2]. The authors chose this topic because it allows me to understand 
the working principles of biped robots by manipulating the stability of the robot base and analyzing error data in 
simulations, in order to provide solutions for future projects where real prototypes may be needed.  

The purpose of this research is to design a biped humanoid robot with stability control by applying kinematic 
operations and developing various closed-loop control systems. This will enable the fulfillment of stability control in 
biped robots. Furthermore, this project will allow me to capitalize on my simulation skills by demonstrating the stability 
control of robots using different mathematical modeling techniques. 

RELATED WORK 
The proportional–integral–derivative (PID) feedback controller is a common type of feedback controller used in 

industrial control applications. It consists of a variable that is controlled depending on error, the difference between the 
set point, and is used to measure a certain plant. Each PID controller element represents a specific control action, and the 
error is utilised to change some process input to its target value [3]. 

A proportional integral controller (PI controller) is a form of feedback control system that combines the control actions 
of a proportional controller with an integral controller. The proportional controller adjusts the control output based on the 
error signal, which is the difference between the desired and actual values. It produces an output proportionate to the error 
signal. The integral controller adjusts the control output based on the accumulated mistake over time. It produces an 
output proportional to the error signal's integral over time. 

The use of a PD type controller for controlling the hip and knee joints of a robot during operation is a common 
approach. In order to improve the accuracy of the control system, a predictive PD controller can be implemented to 
monitor the positions and angular momentum of both the right and left legs. This helps to prevent errors that may occur 
due to incorrect modeling. The Simulink tool can be utilized to implement the PD controller block. The control block 
receives two input signals, the reference signal and the actual joint position, and produces an output signal based on this 
information. The error signal is calculated by subtracting the reference signal from the actual joint position. The controller 
then uses this error signal to determine the appropriate output for adjusting the joint position. 

LQR (Linear Quadratic Regulator) is a contemporary controller type. Using the state-space technique, it analyses and 
regulates such systems. Using the state space approach to manipulate a multi-output system is straightforward. Because 
the results of the PID Controller improve when there is a disturbance in the system, a LQR controller is necessary [4].  
This control theory aims to run a dynamic system at the lowest cost achievable. The LQ issue is defined as a circumstance 
in which the system dynamics are represented by a set of linear differential equations and the cost is characterised by a 

ABSTRACT – As technology has advanced, the usage of robots has become a major worldwide 
issue, especially for robots that interact with people. Humanoid biped robots have the potential to 
function as people's helpers, capable of assisting society and replacing humans in various or 
dangerous tasks. However, despite advances in robotic stability control, robust control for a broad 
variety of applications remains a difficulty. The purpose of this research is to look at optimum control 
techniques for stability control in humanoid biped robots in order to obtain superior stability. To 
regulate the robot's stability, several control techniques such as Proportional-Integral-Derivative 
control, Proportional-Integral control, Proportional-Derivative control, and Linear Quadratic 
Regulator (LQR) are utilised. Before implementing these control techniques, the humanoid biped 
robot's open loop system is evaluated to determine its stability response. To investigate the system 
response of robot stability control, the MATLAB programme is used. 
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quadratic function. LQR is also required for the stability control of biped robots, since PID can barely monitor feedback 
and cannot effectively regulate or manipulate the stability system.   

MODELLING OF BIPED ROBOT  
Modelling of 2 Legs and Body  

In this research, the robot’s leg is constructed by two part which are hip and knee. Modelling of robot’s hip and knee 
is to design based on stability control to ensure the robot can walk like a normal human. There are some criteria of making 
a walking robot. The understanding of human walking is the first criteria must be concerned. This basic human behaviour 
continues to be one of the more challenging study problems in multi-body systems and robots. Figure 1 portrays human 
walking as a periodic process divided into two parts, referred to as a gait cycle. The first phase is the swing phase, also 
known as the single support phase, while the second phase is the double support phase The hip height is the height at 
which the robot begins to stand. A stance leg is one that makes contact with the ground. Otherwise, it is known as a swing 
leg. It is also important to note the transitions between the single support and double support stages. The moment of lift 
off, which occurs immediately at the start of the single support, is when the foot is just moving the body forward until the 
point where the leg loses touch with the ground [5].  

 

Figure 1. Human Gait Cycle and Parameter 

The illustration diagram show in Figure 2 is to define the coordinates frame of the Humanoid Biped robot leg for each 
joint through D-H conventions. The red arrows represent x-axis, green arrows indicate y-axis and blue arrows denote z-
axis. Assuming that each joint only possesses a single degree of freedom, it is possible to describe the action of each joint 
using a single real number. For example, the angle of rotation in the case of a revolute joint, or the displacement in the 
case of a prismatic joint, can be used to describe the action of the joint. The purpose of forward kinematic analysis is to 
establish the cumulative effect of joint variables for the whole system. Besides, work on developing a set of standards 
also provide a systematic procedure for carrying out the system. 
 

 
Figure 2. Coordinates frames of Biped Humanoid Robot for each leg joint 

TABLE OF STRUCTURAL KINEMATIC PARAMETER 
As the coordinate frame of humanoid biped robot through D-H convention is derived, then a structural kinematic 

parameter table is required to construct in purpose to calculate the transformation matrix. 𝑎𝑎𝑖𝑖 is referred to as the link 
length, while 𝑑𝑑𝑖𝑖  is referred to as the offset. 𝛼𝛼𝑖𝑖 indicates the link offset. 𝜃𝜃𝑖𝑖  is the joint angle that must be computed in 
order to place a link accurately. At least one set of joint angles that meet a particular posture in standard walking condition. 
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Table 1. Kinematic Parameter Table 

Link i 𝒂𝒂𝒊𝒊(cm) 𝜶𝜶𝒊𝒊(∠) 𝜽𝜽𝒊𝒊(∠) 𝒅𝒅𝒊𝒊(cm) 
1 10.0 90 𝜃𝜃1 0 
2 17.0 0 𝜃𝜃2 0 
3 17.5 0 𝜃𝜃3 0 
4 5.0 -90 𝜃𝜃4 0 
5 0 90 𝜃𝜃5 0 
6 5.0 -90 𝜃𝜃6 0 
7 17.5 0 𝜃𝜃7 0 
8 17.0 0 𝜃𝜃8 0 
9 10.0 90 𝜃𝜃9 0 
10 0 0 𝜃𝜃10 0 

 

ANALYSIS CONTROL SYSTEM BASED ON MATHEMATICAL MODELLING 
The different control method is applied onto the hip and knee of robot to analyse the response of position control 

system in MATLAB simulation. The calculation of mathematical modelling is required to discover that the features with 
some strategies and understanding of the system modelled. 

Forward Kinematics 
Denavit-Hartenberg Convention 

The Denavit and Hartenberg (D–H) convention, which was established by Jacques Denavit and Richard S. Hartenberg, 
is a well-known convention for creating the reference frame in robotics applications. The Denavit Hartenberg (DH) 
protocol is a well-known method for assigning coordinate frames to the various links of a robotic leg. By reducing 
complexity from kinematic analysis and allowing us to develop equations of motion using kinetic and potential energy, 
the DH method ensures that the position and orientation of each frame can be defined using just four variables [3]. The 
convention is often used for mathematical modelling of industrial robot manipulators, and the D-convention is employed 
to provide a coordinate frame to each joint. 

Transformation matrix for links is shown in Equation 1. 
 

 
Transformation matrix of Biped robot leg 

This approach comprises the calculation of one leg with three degrees of freedom for a humanoid biped robot in right-
standing position. This is achievable because it is believed that the modelling parameters for the left and right robot legs 
are identical. This assumption is since the geometry, mass distribution, and actuator characteristics of the left and right 
legs of a humanoid biped robot are often symmetrical. 

By calculating just one leg with three degrees of freedom, the complexity of the model is minimised, allowing for 
more efficient analysis and simulation. Without the extra complexity of modelling the complete robot, this method allows 
for a more concentrated investigation of the individual leg and its dynamics. Notably, this technique may not be applicable 
in all situations, and it is vital to test the symmetry of the robot's left and right legs; if the robot has asymmetrical legs, 
the findings of the research may not be correct. In addition, even if the legs are symmetrical, the research will only give 
insight into the dynamics and control of one leg, and it does not account for the interactions between the legs, which 
might impair the robot's overall stability and performance. The approach entails calculating one leg with three degrees of 
freedom for a right-standing humanoid biped robot, as it is expected that the modelling parameters for the left and right 
robot legs are identical. This method permits a more concentrated investigation of the individual leg and its dynamics, 
but it has limits, and it is required to verify the similarity of the legs and their interactions. The transformation matrices 
of biped robot leg are shown below. 

 

 

𝐴𝐴𝑖𝑖−1𝑖𝑖 = �

cos 𝜃𝜃𝑖𝑖 −𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖 𝑎𝑎𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖 −sin𝛼𝛼𝑖𝑖sin𝜃𝜃𝑖𝑖 𝑎𝑎𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖

0 𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑖𝑖 𝑑𝑑𝑖𝑖
0 0 0 1

� 

 
 
 
 

(1) 

𝑨𝑨𝟎𝟎𝟏𝟏 = �

cos 𝜃𝜃1 0 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃1 10.0𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃1
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃1 0 −sin𝜃𝜃1 10.0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃1

0 1 0 0
0 0 0 1

� 

 

 
 

 
(2) 
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Inverse Kinematic 
In order to get the inverse kinematic equations, the biped robot may be decoupled and considered as two three-link 

planar manipulators rather than a single 6 degree of freedom manipulator [6]. This can tell which of the two is the stance 
or swing leg by decoupling the system. Because the global coordinate frame is allocated to the stance leg, the unknown 
joint angles for this leg must be obtained before the joint angles for the swing leg. We also assume that the hip and foot 

𝑨𝑨𝟏𝟏𝟐𝟐 = �

cos 𝜃𝜃2 −𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃2 0 17.0𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃2 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2 0 17.0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃2

0 0 1 0
0 0 0 1

� 

 

 
 

(3) 

𝑨𝑨𝟐𝟐𝟑𝟑 = �

cos 𝜃𝜃3 −𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃3 0 17.5𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃1
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃3 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃3 0 17.5𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃1

0 0 1 0
0 0 0 1

� 

 

 
 

(4) 

𝑨𝑨𝟑𝟑𝟒𝟒 = �

cos 𝜃𝜃4 0 −𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃4 5.0𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃4
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃4 0 sin𝜃𝜃4 5.0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃4

0 −1 0 0
0 0 0 1

� 

 

 
 

(5) 

𝑨𝑨𝟎𝟎𝟐𝟐 = 𝑨𝑨𝟎𝟎𝟏𝟏 × 𝑨𝑨𝟏𝟏𝟐𝟐 
 

𝑨𝑨𝟎𝟎𝟐𝟐 = �

cos 𝜃𝜃1 0 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃1 10.0𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃1
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃1 0 −sin𝜃𝜃1 10.0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃1

0 1 0 0
0 0 0 1

� × �

cos 𝜃𝜃2 −𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃2 0 17.0𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃2 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2 0 17.0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃2

0 0 1 0
0 0 0 1

� 

             

      = �

𝑎𝑎 b 𝑐𝑐 d
𝑒𝑒 𝑓𝑓 g h
i 𝑗𝑗 𝑘𝑘 l

m n o p

� 

 

 
 
 
 
 
 
 
 
 
 

(6) 

𝑨𝑨𝟐𝟐𝟒𝟒 = 𝑨𝑨𝟐𝟐𝟑𝟑 × 𝑨𝑨𝟑𝟑𝟒𝟒 
 

      = �

cos𝜃𝜃3 −𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃3 0 17.5𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃1
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃3 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃3 0 17.5𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃1

0 0 1 0
0 0 0 1

� × �

cos 𝜃𝜃4 0 −𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃4 5.0𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃4
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃4 0 sin𝜃𝜃4 5.0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃4

0 −1 0 0
0 0 0 1

� 

 

      = �

𝑎𝑎1 𝑏𝑏1 𝑐𝑐1 𝑑𝑑1
𝑒𝑒1 𝑓𝑓1 𝑔𝑔1 ℎ1
𝑖𝑖1 𝑗𝑗1 𝑘𝑘1 𝑙𝑙1
𝑚𝑚1 𝑛𝑛1 𝑜𝑜1 𝑝𝑝1

� 

 

 
 
 
 
 
 
 
 
 
 

(7) 

𝑨𝑨𝟎𝟎𝟒𝟒 = 𝑨𝑨𝟎𝟎𝟐𝟐 × 𝑨𝑨𝟐𝟐𝟒𝟒 
 

      = �

𝑎𝑎 b 𝑐𝑐 d
𝑒𝑒 𝑓𝑓 g h
i 𝑗𝑗 𝑘𝑘 l

m n o p

� × �

𝑎𝑎1 𝑏𝑏1 𝑐𝑐1 𝑑𝑑1
𝑒𝑒1 𝑓𝑓1 𝑔𝑔1 ℎ1
𝑖𝑖1 𝑗𝑗1 𝑘𝑘1 𝑙𝑙1
𝑚𝑚1 𝑛𝑛1 𝑜𝑜1 𝑝𝑝1

� 

 

           = �

𝑎𝑎2 𝑏𝑏2 𝑐𝑐2 𝑑𝑑2
𝑒𝑒2 𝑓𝑓2 𝑔𝑔2 ℎ2
𝑖𝑖2 𝑗𝑗2 𝑘𝑘2 𝑙𝑙2
𝑚𝑚2 𝑛𝑛2 𝑜𝑜2 𝑝𝑝2

� 

 

 
 
 
 
 
 
 
 
 
 

(8) 
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orientations for both the stance and swing legs are perpendicular to the ground. This assumption establishes a link between 
hip, knee, and ankle specifically 𝜃𝜃ℎ𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎= 0. The hip and ankle roll joint angles of the two legs are equated 
to zero to realise the biped's movement exclusively along the sagittal plane. From what we have been discussed above, 
the inverse kinematic equation is referred to the gait cycle of human walking. Each foot makes one ground contact (stance 
phase) and remains on the ground for about 60–62% of the whole gait cycle. Consequently, the phase of the gait cycle 
when the foot is raised off the ground (swing phase) accounts for around 38–40%. In contrast to sprinting, when both feet 
never simultaneously touch the ground, walking has two double contact moments. 10% of the walking stance phase is 
devoted with both feet planted on the ground. 

Stance Leg Equation 
The stance phase accounts for around sixty percent of the gait cycle. When the foot is in touch with the ground and 

the leg is bearing weight. This phase starts when the foot makes its first contact with the ground and ends when the 
ipsilateral foot departs the ground. The equations is show as below: 
 

 
 

 

Figure 3. Inverse Kinematic Equation of Stance Leg  

Swing Leg Equation 
When the foot initially leaves the ground, the swing phase of gait starts and finishes when the same foot strikes the 

ground again. The swing phase contributes for forty percent of the gait cycle. The following equation are calculated as 
follows: 

  

CONTROL ALGORITHM 
A control algorithm is a mathematical-logical action specification for the work that a controller is intended to do. 

Control algorithms are a logical series of separate execution stages that are specified individually. It is possible to include 
a control algorithm into the software of a computer so that it may be used in actual applications. In order to carry out an 
operation, a particular input will first be provided with a specific output. In feedback control, the output of the system is 
continually monitored and compared to a desired setpoint. This discrepancy, known as the error, is used to change the 

k𝟏𝟏 = s 
 
k𝟏𝟏 = h − l𝟏𝟏 − l𝟒𝟒  
 
𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = −𝑐𝑐𝑐𝑐𝑐𝑐−1(𝑘𝑘1

2+𝑘𝑘12−𝑙𝑙22−𝑙𝑙32

2𝑙𝑙2𝑙𝑙3
) 

 
𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  =  −𝑡𝑡𝑡𝑡𝑡𝑡−1(𝑘𝑘1(𝑙𝑙3𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘+ 𝑙𝑙2)−𝑘𝑘2𝑙𝑙3𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝑘𝑘2(𝑙𝑙3𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘+ 𝑙𝑙2)+𝑘𝑘1𝑙𝑙3𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
) 

 
𝜃𝜃ℎ𝑖𝑖𝑖𝑖  = −𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 − 𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

 
 
 
 
 
 
 
 
 
 

(9) 

k𝟏𝟏 = -s 
k𝟏𝟏 = h − l𝟔𝟔 − l𝟗𝟗 
𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = −𝑐𝑐𝑐𝑐𝑐𝑐−1(𝑘𝑘1

2+𝑘𝑘12−𝑙𝑙72−𝑙𝑙82

2𝑙𝑙7𝑙𝑙8
) 

𝜃𝜃ℎ𝑖𝑖𝑖𝑖 =  −𝑡𝑡𝑡𝑡𝑡𝑡−1(𝑘𝑘1(𝑙𝑙8𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘+ 𝑙𝑙7)−𝑘𝑘2𝑙𝑙8𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑘𝑘2(𝑙𝑙8𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘+ 𝑙𝑙7)+𝑘𝑘1𝑙𝑙8𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

) 
𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   = −𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 − 𝜃𝜃ℎ𝑖𝑖𝑖𝑖 

 
 
 
 
 
 
(10) 
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system's inputs in order to lower the error and bring the output closer to the setpoint. This control method is sometimes 
referred to as closed-loop control. In feedforward control, the algorithm predicts the impact of the system's inputs and 
changes them appropriately to reach the intended output.  

 

 
Figure 4. The concept of control system for robotic joint display 

OPEN LOOP SYSTEM ANALYSIS 

 
Figure 5. Response of Open Loop for Stance Leg 

The diagram above illustrates the problem with using an open-loop system without a controller for the hip joint. 
Without feedback, the joint may overshoot its intended range of motion and become unstable. This is why a controller is 
necessary to ensure stability and control. Similarly, the response of the knee joint in the stance leg can be irregular and 
inaccurate in an open-loop system. Without measuring the output and adjusting the inputs accordingly, the system may 
deviate from its intended trajectory, which is unacceptable for a robot leg that needs to maintain stability and performance. 
Additionally, using an open-loop system for the ankle joint in the stance leg can also result in instability. Fluctuations in 
the system's parameters may cause significant changes in performance, making it difficult to predict the system's behavior. 
Additionally, the system is not able to compensate for external disturbances [7]. 

CLOSED LOOP SYSTEM ANALYSIS 
This is an overview of the sinewave response of ankle joint on swing and stance leg. The root mean square (RMS) is 

implemented in order to compare the sinewave response of the controllers with the desired reference response. 
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Ankle joint of Swing Leg 

 
Figure 6. Magnify of Sinewave Response of Ankle joint of Swing Leg 

 
Figure 7. Sinewave Response of Ankle joint of Swing Leg 

Based on the sinewave response above, the LQR controller proves to be an effective option for the ankle joint of the 
swing leg as it not only achieves a higher RMS value of 99.26% compared to the PID controller's 99.08%, but it also has 
the ability to control the rate change of the motor position, the motor position, and the current of the motor. This means 
that LQR can handle changes in the system more effectively and maintain stability in the ankle joint of the swing leg, 
which is crucial for the smooth and efficient movement of the robot. Furthermore, LQR's lower deviation in RMS value 
is essential for keeping the robot upright and steady. Consequently, LQR is the optimal choice for stability control of the 
ankle joint of the swing leg. 

Table 2. Root Mean Square of Ankle joint of Swing Leg  
Control Method Root Mean Square,RMS 
Proportional-Integral-Derivatives 0.534 (99.08%) 
Proportional-Integral 0.505 (98.34%) 
Proportional-Derivatives 0.538 (98.89%) 
Linear Quadratic Regulator 0.540 (99.26%) 

 
 
 

Ankle joint of Stance Leg 
The LQR controller was found to have the lowest deviation in RMS value, at 98.52%, when applied to the ankle joint 

of the stance leg. This is significant because the stability of the ankle joint of the stance leg is a crucial factor in the overall 
stability and balance of the robot. The ankle joint of the stance leg bears the majority of the robot's weight and any 
deviation or instability in this joint can greatly affect the robot's ability to move and walk efficiently. The LQR controller's 
ability to achieve a lower deviation in RMS value on the ankle joint of the stance leg therefore it is highly recommended 
for apply to this joint. Despite that, PID controller achieve near RMS value than LQR, it is not recommended for use on 
the ankle joint of the stance leg as it does not provide the same level of stability and balance as the LQR controller. 

 

1.45 1.5 1.55 1.6 1.65 1.7 1.75

time,s

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

Fr
eq

ue
nc

y 
R

es
po

ns
e 

of
 R

ef
er

en
ce

 A
ng

le

Ref.AnkleSwing

PID.AnkleSwing

PI.AnkleSwing

PD.AnkleSwing

LQR.AnkleSwing

0 1 2 3 4 5 6 7 8 9 10

time,s

-1.5

-1

-0.5

0

0.5

1

1.5

Fr
eq

ue
nc

y 
R

es
po

ns
e 

of
 R

ef
er

en
ce

 A
ng

le

Ref.AnkleSwing

PID.AnkleSwing

PI.AnkleSwing

PD.AnkleSwing

LQR.AnkleSwing



Zhi et al. │ Mekatronika │ Vol. 5, Issue 1 (2023) 

95   journal.ump.edu.my/mekatronika ◄ 

 
Figure 8. Magnify of Sinewave response of Ankle Joint of Stance Leg 

 

 
Figure 9. Sinewave response of Ankle Joint of Stance Leg 

 
Control Method Root Mean Square,RMS 
Proportional-Integral-Derivatives 0.533 (97.97%) 
Proportional-Integral 0.503 (93.01%) 
Proportional-Derivatives 0.522 (95.96%) 
Linear Quadratic Regulator 0.536 (98.52%) 

EXPERIMENTAL RESULTS 
Based on the findings of the characterization, it can be said that LQR is a better approach for providing the required 

angle of each joint in order to increase accuracy and create a strong, stability control for the humanoid biped robot leg. 
Through the MATLAB simulation, the sinewave responses were analysed, and the characteristics of each joint on the 
stance leg and swing leg were collected. The implementation controller's goal is to make the control method as stable as 
possible while also determining if it is feasible to achieve the target angle. MATLAB is user-friendly because it can be 
easy to adjust sinewave responses to reduce steady-state error, The LQR control approach is more effective at ensuring 
stability control. because it is compatible with three feedback gains, which are defined as the rate change of motor 
position, motor position, and current. The sinewave response is mathematically modelled and tuned to imitate a stability 
control system. 

CONCLUSION 
Based on the results of various controllers, including PID, PI, PD, and LQR, were effectively implemented and 

evaluated on the stability control of a humanoid biped robot leg. The controllers demonstrated different levels of success 
in reaching the desired reference angles for the various joints such as the hip, knee, and ankle. The PI controller were able 
to achieve the desired reference angles but with some level of steady state error or underdamping. On the other hand, the 
PD controller was able to reach the desired reference angle with minimal steady-state error and a small amount of critical 
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damping at the start. The PID is performed well in term of stability control of biped robot but this controller has its 
limitation as it also able to control the output based on the error between the desired and actual position of the robot, as 
well as the rate of change of the error (derivative term) and the accumulated error over time (integral term) while LQR 
controllers consider system dynamics and optimise control inputs to minimise a cost function that incorporates the 
difference between the desired and actual states of the robot as well as the control inputs itself.. Consequently, LQR 
controller demonstrated successful performance by reaching the desired reference angle with minimal deviation from the 
target, specifically in the absence of overshoot. It is important to note that the controller's gain values were fine-tuned in 
order to achieve the desired level of damping and reach the reference angle. In general, the LQR controllers was able to 
achieve stable. 
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