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INTRODUCTION 

For several decades, the employment of industrial robots have greatly increased especially for the industries moving 
towards automated processes to replace human workers in a variety of monotonous, challenging, and hazardous duties 
[1]. Unlike human, robots are innovated to only receive and execute decisions from the predefined programs, hence they 
fall short in terms of flexibility and adaptability [2]. Without a proper way to manage the workspace between the robots 
and the workers, the uncertainty might ultimately cause the life of the human workers [3]. To minimize such risks, the 
most straightforward way is to keep the robots isolated [4]. Numbers of strategy are innovated by integrating different 
sensors to improve safe human-robot interactions [5]–[7].  

Human-robot interaction is meant to be the study of the interactions between human and robots, often referred as HRI 
in the research field. As the industries move towards Industry 4.0, the concept of HRI has become well-known as it suits 
the trend of Industry 4.0 [8]. It has once been described that human-robot collaboration is an ideal combination of both 
human adaptability and robot efficiency. To realize this wonderful combination, a drastic number of efforts have put in. 
Still, human-centric approach always comes first where the human is always at the top priority over the robots especially 
from the aspect of safety. The industries intend to further explore on ways how to execute HRI and HRC concepts as 
much as possible in a safe manner [9]. 

Hence, research on methods and strategies to improve human safety with regard to HRI and HRC is crucial. Studies 
have been conducted in relation to this topic [10]. It has been a fact that over the years, the vision-based systems are 
considered as the notable approach owing to the richer context provided by this sense [11]. Nevertheless, the major 
advance of artificial intelligence and deep learning techniques has never forgot to look after every single research domain, 
including plantation industry such as tomato classification, plantation industry like diagnosis plant disease detection 
application, as well as the manufacturing industries such as quality inspection [12]–[14]. However, the literature that uses 
both deep learning techniques and vision-based sensor to help improve human safety in human-robot interactions is rarely 

ABSTRACT – Moving towards Industry 4.0, the idea of human-robot interaction (HRI) and human-
robot collaboration (HRC) has been popularized. To introduce more robots into the industries, risk-
correlated issues would be always on the hook as robots are not as flexible as human. In fact, 
although robots can replace human workers in some of the dangerous tasks, still human safety is 
always the top priority for all industries. The most common way to safeguard the human was to 
isolate the working space of human workers and robots. To realize the idea of Industry 4.0, it is 
postulated to have the robots and cobots out of the cage to maximize productivity and efficiency. 
Hence, studies have been conducted with the attempts to free the robots from the isolated working 
space while preserve the safety of human operators. The present study seeks to explore the 
feasibility of transfer learning strategy — fine-tuning to human presence detection tasks as the 
base of practicing safe HRI. A custom image dataset with 1463 images was collected and 
separated into train, validation, and test set with a ratio of 70:20:10. Three RetinaNet object 
detection models with different backbone networks were fine-tuned with the acquired dataset to 
transfer the knowledge learned from source domain to the target domain, which is the human 
presence detection tasks. The result has shown that the RetinaNet_ResNet152-V1-FPN has the 
highest test AP of 74.4% with an inference speed of 13.09 FPS, suggesting that it is the best fine-
tuned RetinaNet models. This study has demonstrated the feasibility of using fine-tuning as the 
strategy to train the object detection models, which can possibly act as the base for improving HRI 
applications via a deep learning visual-based method. In summary, the research has signified the 
uses of deep learning models to perform human presence detections and can be further extended 
for HRI safety applications. 
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found in previous studies. For this reason, this paper intends to explore the feasibility of transfer learning approaches on 
the deep learning-based object detection models — RetinaNet for the human presence detection tasks. 

The remainder of this paper is organized as follows: Section 2 provides a brief review on the recent works related to 
the topics of improving human-robot interactions in terms of safety. Section 3 describes about the development of the 
custom datasets for human presence detection purposes. Section 4 outlines the proposed methods and algorithms used in 
this study. Section 5 reports and summarizes the results from the proposed approach. Section 6 concludes the paper with 
some emphasize on the important findings of the research. 

RELATED WORK 
Mohammed et al. [15] reported an effective online augmented reality-based approach for collision avoidance. To 

simulate the augmented environment, both the three-dimensional (3D) models of the robots and the 3D models of human 
operators were included. In case of human operators, depth cameras were used as the sensors and point clouds were 
captured to simulate the presence of the human operators in the virtual environment. The relative distance between the 
human operators and the robots in the augmented environment was monitored for the collision detection application. This 
solution helps improve the HRI safety without having a significant impact on the performance of the robotic system.  

Pasinetti et al. [16] presented a vision-based safety system for human-robot collaboration by using Time-Of-Flight 
(TOF) cameras. A traditional machine learning method known as Histogram of Oriented Gradient (HOG) was used to 
recognize the human workers, while for robot recognition, the Kanade-Lucas-Tomasi (KLT) algorithm was used. 
Essentially, two concepts were implemented in this study to practice safe HRI, one is the comfort zones strategies which 
monitors the distance between the human workers and the robots, another one is the virtual barriers strategy where there 
is a hard threshold to distinguish whether the area under safe, warning, or danger category. The study has exploit on the 
use case of TOF cameras to improve safety of the human workers exposing to the robots.  

Heo et al. [17] proposed a deep learning-based collision detection framework named CollisionNet. The main idea 
behind this study is to take in the high-dimensional joint signals from the robots as the input to differentiate between 
collision or no collision. The algorithm in between the input joint signals and the binary output collision classification is 
the specially designed deep neural network (DNN) model. It is noted that this method is belongs to the post-collision 
method as it only detects whether a collision has happened or not. Furthermore, it has been mentioned that this study only 
applicable to the robots that have cyclical motion. Samples of signals that include collisions had been collected for the 
models to perform supervised learning. Cycle normalization technique was used to normalize joint signal so that the 
collision signals are more noticeable. As a result, the proposed approach was tested to be sensitive to collision and robust 
to false alarms. The authors have mentioned that this specific DNN method could be very insensitive to uncertainties as 
well as the noises that are not learned by the DNN. 

Amin et al. [18] intended to develop a solution based on the combination of visual perception and tactile perception, 
with the former perception subjected to human actions recognition while the latter cater for physical contact between the 
human operators and the robots. Thus, two datasets were acquired with respect to the vision and the physical contact data. 
Two distinct deep learning algorithms were used in the human action recognition and the physical contact detection. For 
instance, 3D-CNN network was used for the human action recognition, while 1D-CNN was used for the physical contact 
classification. From the study, it can be analysed that the vision perception is correspond to the pre-collision while the 
tactile perception is with respect to the post-collision. By combining both perceptions, the authors have enhanced both 
the productivity and the safety of the HRC applications via deep learning networks.  

CUSTOM IMAGE DATASET FOR HUMAN PRESENCE DETECTION 
Image acquisition 

The entire custom image dataset was built from scratch for the targeted detection task — human presence detection. 
To be more efficient, the images were acquired from the recorded video footages instead of capturing lively. The recorded 
video footages within a specific timeframe were obtained from the surveillance database of TT Vision Holdings Berhad. 
Only a few of the surveillance cameras were selected in the first place. The reason behind this decision is that the human 
workers in these production areas tend to move around, which can introduce variance to the model during the fine-tuning 
process. Different pose and location of the human workers enable the model to have better understanding and context of 
the target detection, subsequently results in a better detection performance.  

A total of 1463 useful images were extracted from the provided video footage. The image dataset is then split into 
three: training, validation, and testing with a ratio of 70:20:10. To further introduce variance, data augmentation 
techniques were applied to the images before feeding into the fine-tuning process as an input. For instance, horizontal 
flipping and cropping were implemented.  
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Figure 1. Example of training images as input 

Image annotation 
In order for the models to learn and extract the meaningful features about the object of interest, annotation have to be 

done for every images. In this study, only the human workers appeared in the images were labelled as this study only 
intended to detect the presence of human workers. Noted that the human workers were annotated with a tight bounding 
box to have the models capture the appropriate features. As for the annotation tool, LabelIMG [19] was used in this study. 
The annotation files outputted from the annotation tool was in the format of PASCAL VOC.  

Image annotation formats conversion 
TensorFlow was selected as the deep learning framework in correspondence to the development of the deep learning 

object detection models as well as the implementation of the fine-tuning strategy. Hence, the annotation files were 
required in the format of TFRecord as this is the format that can be understandable by the TensorFlow library to load the 
datasets. In this case, TFRecord files can be described as a serialized representation of the image dataset in sequence of 
binary strings. A script was utilized to transform all the images and the PASCAL VOC annotation files into the required 
TFRecord files. Considering that the TFRecord only store binary strings, the annotation label will translate to have only 
the class IDs. To define a mapping between the class IDs and the class name, a label map file was generated with only 
the “person” class involved. 

FINE-TUNED RETINANET MODELS 
Transfer Learning via fine-tuning 

Throughout this study, a ready-to-use toolkit known as TensorFlow Object Detection API [20] was leveraged to 
implement the transfer learning. The employed deep learning models were the variants of RetinaNet, which is considered 
as a one-stage detector. In general, the detectors can be partitioned into three components, with ResNet as the backbone 
network, followed by the feature pyramid network as the neck, and lastly SSD as the detector head [21]–[23]. Before the 
transfer learning technique is applied, the RetinaNet models were pre-trained by the COCO 2017 dataset [24]. Thereafter, 
the feature extractor of the pre-trained RetinaNet model were extracted and fit into the fine-tuned RetinaNet model.  

In this context, rather than having the deep learning model to learn from the custom dataset which is smaller in size 
and could be less semantics, the model generalizes over the source dataset followed by the target dataset with such fine-
tuning strategy. By putting fine-tuning into practice are advantageous as it does not require an enormous amount of data 
for training. By this means, only the detector head was subject to the fine-tuning process, while the feature extractor was 
remained as the same. Three RetinaNet models were employed in this study, with a difference in the backbone network 
— ResNet50, ResNet101 and ResNet152. All three RetinaNet models were having the same configuration, with a 2.5k 
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of warmup steps paired with a learning rate of 0.01. As a whole, three RetinaNet models underwent 100k training steps 
paired with a learning rate of 0.001.  
 

 
Figure 2. Transfer learning of RetinaNet models via fine-tuning strategy 

Learning rate and loss inspection 
A number of hyperparameters can be modified to improve the learning of the fine-tuning process. Learning rate is one 

of the crucial hyperparameters among the others as it can affects the sensitivity of learning behaviour as well as time 
taken to complete the fine-tuning process. In order to carefully handle the learning rate, the learning rate is scheduled via 
the technique of cosine annealed with warm restart learning schedule [25]. The idea behind this scheduling technique is 
that the learning rate is started with a relatively high learning rate that will drop in a cosine manner to a minimum value. 
The warm restart increases the learning rate when the learning rate is near the minimum value, which simulated as a reset 
of the learning process with reusing the good weights as the starting point. 

Although the technique can help improve the learning behaviour, chance is still there for exploding gradient and 
vanishing gradient to occur when the error gradients accumulate. Overseeing these phenomena, monitoring of the learning 
losses was take place. The total loss was monitored throughout the fine-tuning process to further guarantee the learning 
of the RetinaNet models goes well. 

Performance evaluations 
Within the domain of deep learning-based object detection, Average Precision (AP) is the most common evaluation 

metrics used to estimate the performance of an object detector. In relation to the computation of AP, precision and recall 
have to be calculated at first. To define the classification is either true or false, the threshold value of Intersection over 
Union (IoU) is required to set beforehand as the calculation of precision and recall is based on the concept of IoU. In 
specific, IoU is defined as the ratio of overlapping area between the prediction box and the ground-truth box to union area 
of two. The calculation of IoU is visualized in Figure 3. 

 
Figure 3. Visualization of Intersection over Union (IoU) 

In this study, the threshold value of IoU is set to 0.5, indicates that as long as the IoU of the prediction box is above 
the IoU threshold value, it is classified as True. Subsequently, the precision and recall of the predictions can be calculated, 
thus the precision-recall curve can be computed by using the formula below: 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐴𝐴𝑃𝑃 = �(𝑅𝑅𝐴𝐴𝑃𝑃𝐴𝐴𝑅𝑅𝑅𝑅𝑛𝑛𝑅𝑅𝐴𝐴𝑃𝑃𝐴𝐴𝑅𝑅𝑅𝑅𝑛𝑛)𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛
𝑛𝑛

 (1) 

EXPERIMENTAL RESULTS 
Monitoring of the learning losses was conducted to ensure that the learning of the models throughout the fine-tuning 

process goes well. As such, the training curve as well as the validation curve were monitored. With respect to three 
RetinaNet models underwent the fine-tuning process, three learning curves were illustrated as shown in Figure 4 to Figure 
6. Each of the graph includes both training and validation losses of that specific RetinaNet fine-tuned model, with the 
orange line as the training loss and the grey dots as the validation loss.  

 

 
Figure 4. Learning curves of fine-tuned RetinaNet with ResNetV1-50 

 

 
Figure 5. Learning curves of fine-tuned RetinaNet with ResNetV1-101 
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Figure 6. Learning curves of fine-tuned RetinaNet with ResNetV1-152 

From all the total loss curves of the RetinaNet fine-tuned models, it can be observed that before the warm-up steps, 
the total loss is either having a high start-off point or increasing in a drastic manner. After the warm-up steps, the total 
loss starts to behave differently, either the slope of the curve is becoming less steep, or the increasing trend starts to slow 
down. It is reasonable to have such phenomena at the beginning of the fine-tuning stage as the knowledge and the features 
learned from the source domain are not specific to the target domain. By providing the custom human detection dataset 
to the models, the models are able to adapt the knowledge that have been learned from the previous domain to the current 
human detection tasks and learn the important feature to specifically detect the presence of human.  

Over the training steps, it is obvious that both the losses of all the models decrease, whereby it indicates that the 
models have slowly adapted the knowledge from source domain towards the target domain human presence detection 
tasks. As the fine-tuning process move towards the end, all the losses are becoming more stable. The total loss converges 
approximately at 75k, 80k, and 90k for three fine-tuned models respectively. In general, as the depth of the backbone 
network is greater, the training steps taken for the loss to converge is greater. Additionally, it is observed that the validation 
loss is higher than the training loss for most of the time towards the end of the fine-tuning process. This is another signal 
to validate that the models are not underfitting and overfitting after the fine-tuning process.  

Figure 7. Train, validation, and test AP of RetinaNet fine-tuned models with 0.5 IoU 
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Table 1. Performance details of RetinaNet fine-tuned models 

RetinaNet fine-tuned models Model size Number of parameters Inference speed (FPS)  

RetinaNet_ResNet50-V1-FPN 121.11 MB 31.685 M 20.92  

RetinaNet_ResNet101-V1-FPN 193.89 MB 50.730 M 16.34  

RetinaNet_ResNet152-V1-FPN 253.88 MB 66.419 M 13.09  

 
With regards to the performance of the fine-tuned RetinaNet models, all three train, validation, and test APs are 

computed and visualized in Figure 7. Discussing about the performance of the fine-tuned models, RetinaNet_ResNet50-
V1-FPN has yielded 75.5% of train AP, 67.2% validation AP and 65.5% test AP, RetinaNet_ResNet101-V1-FPN has 
yielded 72.4% train AP, 65.8% validation AP and 62.8% test AP, while RetinaNet152_ResNet152-V1_FPN has achieved 
83.0% train AP, 71.8% validation AP and 74.4% test AP. It is reported that the fine-tuned RetinaNet_ResNet152-V1-
FPN has the best performance, followed by RetinaNet_ResNet50-V1-FPN and RetinaNet_ResNet101-V1-FPN. The only 
difference between these fine-tuned models is the backbone network, which are ResNet50-V1, ResNet101-V1 and 
ResNet152-V1. From here, it can be deduced that the concept of “deeper network is better” is not necessarily true as the 
performance of fine-tuned RetinaNet model with ResNet50-V1 is better than the fine-tuned RetinaNet model with 
ResNet101-V1.  

Subsequently, the inference speed on RTX 3070 GPU as well as other details of the fine-tuned RetinaNet models are 
tabulated in Table 1. Taking the details into consideration, as the backbone network grow deeper, the model size and the 
number of parameters is getting greater, the inference speed is getting slower. By comparing both RetinaNet_ResNet50-
V1-FPN and RetinaNet_ResNet152-V1-FPN, the fine-tuned RetinaNet_ResNet152-V1-FPN model achieves higher test 
AP of 8.9% with a sacrifice of 7.83 FPS. Hence, this can be attributed to the depth of the ResNet network. If inference 
speed is considered as a key metric for the evaluation, RetinaNet_ResNet50-V1-FPN is recommended. For this study, AP 
is considered the most important metrics to evaluate the performance of the fine-tuned models, thus the 
RetinaNet_ResNet152-V1-FPN is suggested as the best. In short, the fine-tuned RetinaNet_ResNet152-V1-FPN model 
is proposed as the best fine-tuned model with correspond to the human presence detection task.  

CONCLUSION 
In the present research, the cameras with the surveillance systems were utilized to obtain the custom image dataset 

for human presence detection purposes. Human workers appeared in the scene of surveillance cameras were annotated 
with bounding box and appropriate settings via related tools. TensorFlow was used as the main framework in this study, 
therefore the dataset was converted into relevant format that is readable by the framework. Throughout the model training, 
a transfer learning strategy known as fine-tuning was used to fit the model with the intention of reducing time taken to 
train the models. Weights of the pre-trained models were transferred to the fine-tuned model and the prediction heads 
were trained again by feeding in the custom image dataset that is meant for human presence detection task. As a result, 
the fine-tuned RetinaNet_ResNet152-V1-FPN model has achieved the highest AP among all three fine-tuned RetinaNet 
models.  
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