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Introduction 

The Institute for Health Metrics and Evaluation 

(2017) reported that the stroke leads as the third cause 

of mortality in Malaysia. Whereas, Global Burden of 

Disease Report (2016) that the stroke will be the 

second leading cause of mortality in 2040 [1]. It is the 

list of top ten leading root of fatality rate and also the 

reason for hospitalization in Malaysia. World Health 

Organization (WHO) annouced the need for 

rehabilitation for post stroke patients as the 

demographic and health trends are increasing [2].  

Stroke is one of the most common neurological 

disease [3]. The main reason of stroke is the blockage 

or bust of the blood vessels that carries oxygen and 

nutrients to the brain [4]. The most fundamental 

building block of a nervous’s system is the neuron. 

These neurons are specialised in the conveyance of the 

information all over the body. The collection of all this 

neurons that are interconnected represents the human 

behavior and action. Neuromuscular system is the 

merge of the nervous system and muscles that works 

together which allows the movements [5]. The 

dysfunctional of the neurons breaks the contact 

between the nervous system and muscles. The other 

main function of those neurons are the informative 

signals that generates within the neurons. These brain 

signals represents the every actions of a human body.  

Brain signals could be monitored through different 

techniques, namely Electroencephalography (EEG), 

Electrocorticography (ECoG), Magnetic Resonance 

Imaging (MRI), functional Magnetic Resonance 

Imaging (fMRI) and Positron Emission Tomography 

(PET) [6]. These scientific techniques help us better 

understand the function of the human brain. Due to its 

excellent temporal resolution, non-invasive, usability 

and low set-up costs, EEG is the most common 

method for capturing brain signals [7], [8].  

EEG is increasingly relevant in the diagnosis and 

treatment of neurodegenerative diseases and defects in 

the brain. A classification’s main purpose is to 

ABSTRACT – Brain Computer-Interfaces (BCI) offers a means of controlling prostheses for neurological 
disorder patients owing to their inability to control such devices due to their inherent physical limitations. 
More often than not, the control of such devices exploits the Electroencephalogram (EEG) signals. 
Nonetheless, it is worth noting that the extraction of the features is often an arduous task. The use of 
Transfer Learning (TL) has been demonstrated to be able to mitigate the issue. However, the 
employment of such a method towards BCI applications, particularly with regards to EEG signals are 
limited. The present study aims to evaluate the efficacy of different TL models in extracting features for 
the classification of winking. The extracted features are classified utilizing an optimized Random Forest 
(RF) classifier. The raw EEG signals are transformed into a spectrogram image via Fast Fourier 
Transform (FFT) before it was fed into selected TL models. The hyperparameters of the RF model was 
optimized through the grid search approach. A five-fold cross-validation technique was employed on the 
processed dataset that was split into training, testing, and validation with a stratified ratio of 60:20:20. It 
was demonstrated from the study that the best evaluated TL model identified is DenseNet169 as 
compared to DenseNet121 and DenseNet201.The overall validation and test accuracy attained through 
the DenseNet169 model is approximately 89%. It can be suggested that the proposed pipeline is suitable 
to classify wink-based EEG signals for BCI hand grasping application.  
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distinguish EEG segments and to evaluate if people 

are healthy or to measure a subject’s mental state 

relevant to a task being performed [10]. Normally 

enormous amounts of data are produced by EEG and 

visual inspection to discriminate against EEG is a 

time-consuming, error-prone, expensive process and 

not enough for reliable information. The development 

of automated EEG classification methods is therefore 

crucial to ensure proper evaluation and treatment of 

neurological diseases [9].  

In April 2013, the Obama administration 

announced the launch of the BRAIN (Brain Research 

through Advancing Innovative Neurotechnology). 

The BRAIN initiates the potential to do for 

neuroscience what the Human Genome Project did for 

genomics by supporting the development and 

application of innovative technologies which includes 

the Brain-Computer Interface (BCI) that can create a 

dynamic understanding of brain function [10]. 

Related Work 

Various approaches to the classification of EEG 

signals in different research have been published up to 

this point, and various classification accuracies for 

EEG data have been published in the last decade [13–

16].   

Detection of intentional eye blink through EEG 

signals was investigated by [11]. The intentional eye 

blinking signals were collected using the Bio-Radio 

device. The signals were acquired in the Biomedical 

Department Laboratory at the Holy Spirit University. 

The signals collected are segmented into windows 

with 480 samples through a boxcar window. The 

authors have extracted time domain features to 

classify the EEG signals. The features that were 

extracted from the signals obtained were maximum 

amplitude, minimum amplitude in each sample 

window and the kurtosis of the present sample, 

kurtosis of the previous and kurtosis of the nested 

sample. The samples were divided into two sets of 

datasets, which are 70% and for training datasets and 

30% for testing datasets. The classification of the 

signals has been implemented with RBF. The RBF 

used has three layers of the network. They have 

implemented Gaussian Radial Basis Function to 

classify the EEG signals accordingly. A comparison 

between other classifiers has been done by the authors. 

They have compared between multilayer perceptron 

(MLP) with Feed Forward Back Propagation (FFBP), 

MLP-Cascade Forward Back Propagation (CFBP) and 

RBF Binary Classifier. The results for all the three 

classifications were 96.68%, 99.83%, and 100% 

respectively on each classifier.  

[12] proposed a multimodal emotion recognition 

framework by combining facial expression and EEG, 

based on a valence-arousal emotional model. For 

facial expression detection, they followed a transfer 

learning approach for multi-task convolutional neural 

network (CNN) architectures to detect the state of 

valence and arousal. For EEG detection, two learning 

targets (valence and arousal) were detected by 

different support vector machine (SVM) classifiers, 

separately. They used two emotion datasets. Database 

for Emotion Analysis using Physiological Signals 

(DEAP) and MAHNOB human-computer interface 

(MAHNOB-HCI) to evaluate their method. Besides, 

they also performed an online experiment to make 

their method more robust. They experimentally 

demonstrated that our method produces state-of-the-

art results in terms of binary valence/arousal 

classification, based on DEAP and MAHNOB-HCI 

datasets. Besides this, for the online experiment, the 

study achieved 69.75% accuracy for the valence space 

and 70.00% accuracy for the arousal space after 

fusion, each of which has surpassed the highest 

performing single modality (69.28% for the valence 

space and 64.00% for the arousal space). The results 

suggest that the combination of facial expressions and 

EEG information for emotion recognition 

compensates for their defects as single information 

sources. 

[13] developed a deep learning-based method that 

automatically exploits the time-frequency spectrum of 

the EEG signal, removing the need for manual feature 

extraction. Using CWT they have extracted the time-

frequency spectrogram for EEG signal of 10 healthy 

subjects and converted to RGB images. The images 

were classified using transfer learning of a pre-trained 

Convolutional Neural Network (CNN), Alexnet. The 

proposed method was evaluated using a publicly 

available dataset, an open-access comprehensive 

ISRUC-Sleep dataset. The main advantage of this 

method is eliminating the need for manual feature 

extraction and selection while taking advantage of the 

advancements in the deep image classification 

domain. High-resolution time-frequency 

spectrograms of sleep epochs were extracted using 

CWT and converted to RGB images. The extracted 

images were intuitive and interpretable according to 

AASM guidelines. These images were fed to pre-

trained CNN, AlexNet. The overall accuracy achieved 

is 84%. 

To the best of the authors’ knowledge, the 

capability of a hybrid Transfer Learning (TL) – 

Random Forest (RF) pipeline in classifying wink-

based EEG signals has yet been investigated. 

Therefore, the objective of this paper is to evaluate the 

efficacy of different TL models in extracting features 

that are classified by an optimized RF model. It is 

hypothesized that the proposed technique could 

distinguish different categories of EEG signals 

attained from winking expressions. The outcome of 

this study should help to improve the patients’ daily 
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lives quality by implementing BCI [8], [14], [15]. A 

detailed methodology of this process is provided in the 

subsequent section. 

Methodology 

Typically, the classification of EEG signals 

consists of four steps, namely signal collection, pre-

processing, feature extraction and feature selection as 

well as classification [9], [16], [17]. Nonetheless, this 

study will embark on the use of TL for feature 

extraction. The main aim of this study is to classify 

Right, Left and No winks that use TL models to extract 

the image-based features and RF Machine Learning 

(ML) models.  

In developing such a system, EEG Emotiv Insight 

(EI) Mobile device was used to collect the EEG 

signals of eye winking. EI has its interface 

communication program and records the EEG signal 

that can be analyzed. Emotive Insight (EI) is a smooth 

and glossy device to collect certain signals of the 

electrical signal produced by the neurons of the brain 

while conducting certain actions. This device consists 

of 5 channels including the reference channel [26]. 

Insight has advanced electronics that are fully 

optimized to produce clean, robust signals any time 

and it can be used anywhere due to its mobility 

property [18]. 

EI is specially designed to measure certain types of 

electrical signals produces through the nodes of the 

brain neurons. It measures and tracks the focus, 

engagement, interest, excitement, relaxation and stress 

levels. Insight mainly detects facial expressions such 

as blink, wink, frown, surprise, and smile. The 

aforesaid 5 channels are AF3, AF4, T7, T8, and Pz, 

respectively. The position of these nodes was 

determined according to the international standardized 

10-20 system. The position of the electrodes as shown 

in Figure 1. 

 
Figure 1. Position of the Electrode  

To participate in this experiment, five healthy 

subjects were selected. The participants were 3 males 

and 2 females aged 22 to 29. All of them are 

undergraduate students. The subjects have been 

reported to have no medical problems and have normal 

vision. The participants have no history of 

neurological disease or psychiatric disorder. None of 

them have any prior experience in the experiment that 

will be carried out. Besides, the subjects were not 

aware of the Brain-Computer Interface (BCI) 

applications. The study has been aproved by an 

institutional research ethics committee (FF-2013-

327). 

The experiment was conducted in a controlled 

room without any other noise from the environment 

located at the Faculty of Electrical and Electronics 

Engineering Technology, University Malaysia 

Pahang. This is to remove the environmental 

disruption to be registered along with the emitted EEG 

signal. The subjects sat on an ergonomic chair. They 

were told to remain in a relaxed position and to stay 

relaxed without any extra physical activity throughout 

the experiment. The slide show demonstration was 

shown as a guide for the participants to obey and 

perform the experiment appropriately. The slides were 

shown almost one meter away from the subject. 

Throughout the experiment, a model that consists 

of five left and right wink trials was used.The 

experiment paradigm is shown in Figure 2. The first 

slide shows that the participants are in a 5-second 

resting position followed by winking either left or 

right for the next 5 seconds. Then rest another 5 

seconds and replicate the winking action shown on the 

slide show. The whole data collection for left and right 

winking carried out for 60 seconds. All the subjects 

performed the two kinds of winking action for one 

minute. 

 

 
 

Figure 2. The experiment Paradigm for EEG signal   

The pre-process of EEG datasets can be carried out 

in time domain, frequency domain, and time-

frequency domain. It is possible to reflect the signal 

obtained from the electrodes in the time or frequency 

domain. Evaluation of the signal characteristics in 

time domain representation is very complicated, but it 

could be studied in frequency domain representation. 

In this study, the FFT is used to convert the brain 

signal from the time domain into the time-frequency 

domain. 

 



Mahendra et al. │ Mekatronika │ Vol. 2, Issue 1 (2020) 

 

 journal.ump.edu.my/mekatronika 4 

Conversion of EEG Signal: Spectrogram  

Spectrogram contains a compromise between time 

resolution and frequency resolution [19]. It is a 

visualization of a signal’s frequency spectrum, as it 

differs over time. A spectrogram is usually depicted as 

a heat map, like an image with the intensity shown by 

varying the color or brightness. Using the FFT to 

create a spectrogram is a digital process. In the time 

domain. Digitally sampled data is separated into 

segments that normally overlap, and FFT to measure 

the frequency spectrum magnitude for each section 

[20], [21]. 

The windows obtain a time-slice of the signal, 

during which the spectral characteristics are nearly 

constant [22]; the obtained segments shift the time 

window with some overlapping. The spectrogram is 

defined as the magnitude of S(m,k), represented as 

A(m,k)as shown in equation 3: 

 

 

𝐴(𝑚, 𝑘) =  
1

𝑁
 |𝑆(𝑚, 𝑘)|2      (1) 

 

Typically, a configuration of a spectrogram is as 

follows: the x-axis specifies the time, the y-axis serves 

frequency, and the third dimension is the amplitude of 

a frequency-time pair coded in color. 

 

Feature Extraction: Transfer Learning (TL) 

Inadequate training data is a serious issue in all 

bioinformatics related domains. The use of TL could 

minimize this issue [23], [24]. TL is a popular method 

in computer vision as it allows for the development of 

accurate models in a time-effective way [25]–[27]. 

Instead of initiating the learning process from scratch, 

TL starts from trends learned while solving various 

problems (pre-trained models), besides, classification 

leverages from previous experience [28]. This 

technique should support from pre-trained models in 

the classification leverages. The models used in this 

research as listed in Table 1. 

 

Table 1. List of TL models implemented in this 

research  

No. TL Models  Flatten Size  Input Image Size 

1 DenseNet 121 7*7*1024 

224*224 2 DenseNet 169  7*7*1664 

3 DenseNet 201 7*7*1920 

 

Classifier: Random Forest (RF)   

Random Forest (RF) is an ensemble learning 

method for classification, regression, and other tasks, 

In which a number of decision trees are created at the 

training time and a class is given as output which is the 

mode of the classes [29]. In order to create number of 

decision trees, data and variables are selected 

randomly from the available set of data and variables. 

To build a tree during training time a finite set of 

thresholds is used among which a threshold is selected 

for each node. While constructing a tree separation of 

classes is being done and probability of data point to 

be of any class is different for each node. The newly 

arrived data point goes down in the tree and it ends at 

leaf and the class with highest probability for that node 

shows the actual class of data point in that tree. Single 

random tree is not a good classifier but if we combine 

a number of random trees then it becomes a very good 

classifier [30]. The Gini value of the Gini index is used 

as the basis of the splitting node. The hyperparameters 

of RF will be number of estimators, maximum 

features, maximum depth, minimum samples split, 

minimum sample leaf, Bootstrap, and criterion. Table 

2. illustrates the hyperparameters that were tuned 

through grid search method. 

Table 2. List of hyperparameters values in RF 

classifer 

No. Hyperparameters  RF Models  

1 n_estimator 10, 20, 30, 40, 50, 60 & 70  
2 max_depth 10, 20, 30, 40, 50, 60 & 70  
3 Criterion Gini and Entrophy 

 

Cross-Validation Strategy  

Owing to the limited set of data, the k-fold cross-

validation technique is employed. This approach 

provides ample data for model training and also leaves 

adequate data for test and validation. k-fold cross-

validation solves this issue. In k-fold cross-validation, 

the data is divided into k subsets. Through this 

method, the cross-validation is repeated k times, such 

that each time, one of the k subsets is used as the test 

and validation dataset and the other k-1 subsets are put 

together to form a training set. Such technique has 

been reported to reduces bias [31]–[33]. 

In this research, each dataset was classified into 

three dataset classes which are train dataset, validating 

dataset and testing dataset [34]. The train data group 

has been used to train the prediction model. Whereas, 

the validate data group has been utilized to evaluate 

the model and test dataset used to measure the 

classifier’s performance. As a general rule and 

empirical evidence, K = 5 or 10 is generally preferred. 

Therefore, K = 5 was chosen. Ninety (90) instances 

have been randomly categorized into 5 subgroups and 

one of the five subgroups was provided as test data for 

each experiment, while the other nine are used as the 

training data. Then, the average efficiency is 

determined over all the folds. RF models performance 

was analyzed and measured using Spyder 3.7. 
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Performance Evaluation  

Using the confusion matrix is a simple and 

unambiguous way to present the statistical effects of a 

classifier. The confusion matrix is one of the most 

straightforward and simplest measures used to 

determine model consistency and correctness [35], 

[36]. Table 3 illustrated the truth table of confusion 

matrix. 

 

Table 3. The Confusion Matrix 

 
The classification models employed in this study 

are assessed by means of classification accuracy, 

precision, recall, and f1-score. The accuracy is simply 

the correlation between the number of observes 

reasonably listed and the total number of observations. 

The precision measures the percentage of correct 

positive forecasts over the cumulative number of 

positive forecasts. The recall is the number of True 

Positives the number of False Negatives. It is the 

number of positive predictions divided by the number 

of positive class values in the test data [37].   

 

Experimental Resuls and Discussion  

As mentioned earlier, this chapter refers to the 

collected data sets for the proposed method. The 

proposed approach is being used to classify EEG 

signals of the winking tasks of three classes. The 

results of the experimental data sets will be discussed 

below.  

The EEG winking data consists of six sets having 

two single-channels of EEG signals. Each data set was 

collected at the sampling rate of 128 samples per 

second of each channel. The datasets were divided into 

segments to obtain only the winking signals. Thus, 

each segment is composed of 640 samples. Using the 

FFT algorithm, the digital signal has been converted 

to an image. The converted images were saved into 

224 × 224 dimension as per the input size for the TL 

models. The bar chart below illustrates the accuracy 

result of all the TL models classified with the fine-

tuned RF classifier. Figure 3 shows the plot of raw data 

of five trials of the EEG Right Winking signal of 

subject A. Whereas, Figure 4 shows the spectrogram 

of the converted digital signal. 

 

 
Figure 3. Right Winking of Subject A  

 

 

Figure 4. Spectrogram of (a) Left Wink (b) Right 

Wink (c) No-Wink 

The TL models were used to extract features and 

select suitable features from the images. The outcome 

from TL models was for classification research on the 

hyperparameter tuned RF model. The grid-search 

method was used to tune the hyperparameters of the 

RF model. A total of 98 RF models were developed 

through varying the hyperparameters of the RF 

algorithm. The parameters that were tuned are the 

maximum depth, number of trees, and the criteria of 

the classifier. The best type of criteria that was used to 

simulate the model is Gini Index. The number of trees 

that performed the best is 40. Whereas, the maximum 

number of levels in each decision tree is 50 obtained  

the highest accuracy. 

Through Figure 5, DenseNet169 discloses the best 

model among all the other TL models. It is noticeable 

that by trying to run the classification on training 

datasets, all the three TL models achieved 100% 

(a) (b) 

(c) 
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accuracy. The average CA on the validation and 

testing dataset of the DenseNet169 pipeline is  

Figure 5. Classification accuracy of TL Models 

approximately 89%, suggesting that this pipeline is the 

best amongst the evaluated models.  Table 4 depicts 

the performance measures of the validation dataset of 

DenseNet169.  

Table 4. Performance measures of DenseNet169 of 

the Validation dataset  

No. Class  Precision Recall F1-
score 

CA 

Left Winking  0 0.83 0.83 0.83 
89 Right Winking  1 1.00 1.00 1.00 

No Winking  2 0.83 0.83 0.83 

 

The following Figure 6 show the confusion matrix 

of the testing dataset of DenseNet169.  

 

 

Figure 6. Confusion Matrix of Testing Dataset  

Conclusion  

Transfer Learning is a promising approach to 

improve EEG classification performance in BCI. In 

this paper, the transfer learning method using 

imagenet is employed to classify winking stages 

automatically. Different stages of winking were 

converted into a spectrogram image through FFT. This 

research focused on implementing different types of 

TL models along with the spectrogram. The main 

purpose of the TL models is to extract features and 

select the best features to classify the EEG signal 

accordingly. The features then implemented into the 

RF classifier to classify the signals accordingly. 

Through this, the best result has been obtained by the 

DenseNet169 model with the highest accuracy of 84% 

through validation dataset and training dataset 

compared with DenseNet121 and DenseNet201. The 

finding is non-trivial, mainly in BCI real-time 

implementation as the steps of processing has been 

reduced through the implementation of TL models to 

extract significant features. Future studies shall 

attempt on the evaluation of other TL models that 

could process the features faster compared with 

current TL models that has been utilized in this 

research.  
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