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Introduction 
Particle swarm optimisation (PSO) algorithm, was 

introduced by Kennedy and R. Eberhart in 1995 [1]. It 
looks for optimal solution of an optimisation problem 
by mimicking the social behaviour seen in nature, such 
as flock of birds looking for food. In PSO, these 
organisms are represented by a swarm of agents called 
particles. The particles move within the search area 
looking for optimal solution by updating their velocity 
and position. These values are influenced by the 
personal experience of the particles and their social 
interaction. 

PSO has gained a lot of interest since its 
introduction. Numerous researches had been 
conducted involving PSO. Some of these works 
focuses on improvement of the algorithm through 
introduction of new parameters such as inertia weight 
[2] and constriction factor [3]. The PSO has also been
improved to solve specific type of problems such as
multiobjective optimization [4], discrete optimization
[5-6] and dynamic optimization problem [7-8].
Application of PSO in solving real world optimization
problem is also a popular trend. For example PSO had
been successfully applied in robotics [9], biomedical
optimization [10], and wireless sensor networks [11].

However, there are a few fundamental aspects of 
PSO which are not getting much attention, such as the 
synchronicity of the particle update sequence, which 
is also known as iteration strategy [12]. The traditional 
PSO iteration strategies can be divided into two 
categories, synchronous and asynchronous, as shown 
in Figure 1.  

In the original PSO, a particle’s information on the 
neighbourhood’s best found solution is updated after 
the fitness of the whole swarm is evaluated. This 
version of PSO algorithm is known as synchronous 
PSO (S-PSO). The synchronous update in S-PSO 
provides perfect information on the fitness of the 
whole swarm based on the members’ positions. Thus, 
allowing the swarm to choose the best neighbour and 
exploit the information of the best position provided 
by this neighbour. However, this could cause the 
particles to converge too fast. Many works has 
reported that synchronous update leads to a strong 
exploitation by S-PSO. However, according to [13], if 
the improvement of the best found solution is 
marginal, the synchronous update is not only reducing 
the exploration, but it also hinders the particles from 
exploiting and benefiting from the information 
available. 

ABSTRACT –Particle swarm optimisation (PSO) is a population-based stochastic optimisation 
algorithm. Traditionally the particles update sequence for PSO can be categorized into two groups, 
synchronous (S-PSO) or asynchronous (A-PSO) update. In S-PSO, the particles’ performances are 
evaluated before their velocity and position are updated, while in A-PSO, each particle’s velocity and 
position is updated immediately after individual performance is evaluated. In another study, a random 
asynchronous PSO (RA-PSO) has been proposed. In RA-PSO, particles are randomly chosen to be 
updated asynchronously, the randomness improves swarm’s exploration. RA-PSO belongs to the 
asynchronous group. In this paper, a new category; hybrid update sequence is proposed. The new 
update sequence exploits the advantages of synchronous, asynchronous, and random update methods. 
The proposed sequence is termed as, random synchronous-asynchronous PSO (RSA-PSO). RSA-PSO 
divides the particles into groups. The groups are subjected to random asynchronous update, while the 
particles within a chosen group are updated synchronously. The performance of RSA-PSO is compared 
with the existing S-PSO, A-PSO, and RA-PSO using CEC2014’s benchmark functions. The results show 
that RSA-PSO is superior to both A-PSO and RA-PSO, and as good as S-PSO 
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Figure 1. Categories of PSO’s sequence update. 

 
Another variation of PSO, known as asynchronous 

PSO (A-PSO), has been discussed in [14]. In A-PSO, 
the particles evaluate their fitness and update their 
velocity and position on their own without the need to 
synchronize with the whole swarm. As soon as a 
particle finished evaluating its fitness, it immediately 
identifies the best solution of the whole swarm and 
updates its velocity and position. Hence the particles 
updated at the beginning of an iteration use more 
information from the previous iteration, while 
particles at the end of the iteration use more 
information from the same iteration to determine the 
best solution of the swarm. This allows various leads 
from different best solutions, thus providing more 
exploration by the swarm. 

Recently, random A-PSO (RA-PSO) has been 
introduced [15-16]. The RA-PSO belongs to 
asynchronous update group. In RAPSO, particles to be 
updated are selected randomly. Therefore, in an 
iteration, some particles might be updated more than 
once while other particles may not be updated at all. 
The randomness helps to prevent particles from being 
trapped in local optima and encourage more 
exploration. This is due to various degree of 
information within the swarm, because some particles 
might not be updated for several iterations thus 
possessing outdated information while others might be 
updated more than once in a single iteration. 

In this study, synchronous, asynchronous, and 
random updates are merged so that the advantages of 
each of these methods can be utilized and the 
weaknesses can be overcomed. The proposed random 
synchronous-asynchronous PSO (RSA-PSO) 
algorithm divides the particles into smaller groups. 
The group to be updated are randomly chosen one at a 
time, asynchronously. The particles within a chosen 
group are updated synchronously. The search for the 
optimal solution by the particles in RSA-PSO is led by 
the best member of the groups and the swarm’s best. 

The RSA-PSO improves the performance of PSO by 
balancing the exploitation provided by synchronous 
update, with the exploration by random asynchronous 
update. The RSA-PSO is a method belongs to new 
category of update strategy; hybrid update strategy. 
The CEC2014’s benchmark functions for single 
objective real-parameter numerical optimization are 
used to evaluate the performance of RSA-PSO and the 
existing methods, S-PSO, A-PSO and RA-PSO. The 
results of the existing methods show that stronger 
exploitation in S-PSO is crucial in ensuring good 
performance. The RSA-PSO performs as good as S-
PSO which is the best update strategy among the 
traditional methods. 

PSO’s Update Sequence 
Traditionally PSO is either implemented as a 

synchronous update algorithm or asynchronous 
update. Synchronous update method is the typical 
method used in PSO while asynchronous update is 
another available approach. Asynchronous update is a 
more accurate natural model, it increases the potential 
of parallelization of an algorithm [17]. 

Synchronous update 
In PSO, the search for optimal solution is 

conducted by a swarm of P particles. At time t, particle 
ith has a position, xi(t), and velocity, vi(t). The position 
represents a solution suggested by the particle while 
velocity is the rate of change to the next position with 
respect to the current position. At the start of the 
algorithm, these two values (position and velocity) are 
randomly initialised. In the subsequent iterations the 
search process is conducted by updating these values 
until a position with ideal fitness is attained or 
maximum number of iteration, T, is reached. The 
position and velocity are updated using the following 
equations: 
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𝑣!(𝑡) = 𝜔𝑣!(𝑡 − 1) + 𝑐"𝑟",𝑝𝐵𝑒𝑠𝑡!(𝑡) − 𝑥!(𝑡 − 1)2 

+𝑐#𝑟#,𝑔𝐵𝑒𝑠𝑡(𝑡) − 𝑥!(𝑡 − 1)2                  (1) 
 

𝑥!(𝑡) = 𝑣!(𝑡) + 𝑥!(𝑡 − 1)                                       (2) 
 

To prevent the particles from venturing too far 
from the feasible region, the vi(t) value is clamped to 
±Vmax. If the value of Vmax is too large, the exploration 
range is too wide. However, if it is too small, particles 
will favour the local search. In equation (1), c1 and c2 
are the learning factors that control the effect of the 
cognitive and social influence on a particle. Typically, 
both c1 and c2 are set to 2. Two independent random 
numbers r1 and r2 in the range of [0.0, 1.0] are 
incorporated in the velocity equation. These random 
terms provide stochastic behaviour to the particles. 
Inertia weight, 𝜔, is a term added to control the 
particles momentum. The particles can switch to fine 
tuning by manipulating 𝜔 when a good area is found. 
To ensure convergence, a time decreasing inertia 
weight is more favourable than a fixed inertia weight. 
This is because a larger inertia weight at the beginning 
helps to find a good area through exploration and a 
small inertia weight towards the end (when typically a 
good area is already found) facilitates fine tuning. 

An individual success in PSO is affected not only 
by the particle’s own effort and experience but also by 
the information shared by its surrounding neighbours. 
As shown in equation (1), the particle’s velocity is 
updated using pBesti(t), which is the best position 
found so far by particle ith and gBest(t), which is the 
best position found by the swarm up to t th iteration. 

The particle’s position, xi(t), is updated using 
equation (2), in which a particle’s next search is 
launched from its previous position, xi(t-1). Typically, 
xi(t) is bounded to prevent the particles from searching 
in an infeasible region. The fitness of xi(t) is evaluated 
by a problem-dependent fitness function. Therefore, 
for a swarm with P number of particles, the fitness 
evaluation is done P times per iteration. Thus, the 
maximum number of fitness evaluation by S-PSO in a 
run is (P×T).A new position, xi(t) with a better fitness 
than the gBest(t-1) or pBesti(t-1) or both is saved as 
gBest(t) or pBesti(t), otherwise the old values are 
adopted. 

Since in S-PSO the pBesti and gBest are updated 
after all the particles are evaluated, this version of PSO 
is also known as synchronous PSO (S-PSO). 
Synchronous update allows the particles to have a 
complete view of the whole swarm positions and their 
fitness before selecting gBest. Thus, allowing the 
swarm to exploit this information so that a better 
solution can be found. However, this may cause the 
particles in S-PSO to converge faster and prematurely. 
The S-PSO algorithm is shown in Figure 2. 
 

 
Figure 2. The flowchart of the S-PSO. 

 

Asynchronous update 
In synchronous update a particle needs to wait for 

the whole swarm to be evaluated before it can move to 
a new position and continue its search. Hence, the first 
evaluated particle is idle for the longest time, waiting 
for the whole swarm to be updated. PSO is a nature 
inspired algorithm. In nature, an individual is typically 
free to move without the need to synchronize its move 
with others. This concept is adopted in asynchronous 
update, where the particles are updated independently 
without synchronization with the whole swarm. 

The flowchart in Figure 3 shows the A-PSO 
algorithm. A particle evaluates its fitness. After that 
the particle immediately selects gBest and updates its 
pBest. The gBest is selected depending on the swarm 
conditions during a particular particle’s update 
process. Using the latest gBest and pBest a particle 
updates its velocity and position using the same 
equations as S-PSO. This process is then continued by 
the next particles until either ideal solution is found or 
T iterations are reached. Due to lack of synchronicity, 
in a single iteration the particles might use various 
values of gBest, leading to more exploration. Other 
than the variation of gBest used, the lack of 
synchronicity in A-PSO solves the issue of the idle 
particles faced in S-PSO. 
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Figure 3. The flowchart of the A-PSO. 

 
Even though, the flow of A-PSO is different than 

S-PSO, the fitness function is still called for P times 
per iteration, once for each particle. This is similar to 
S-PSO. Therefore, the maximum number of fitness 
evaluation is (P×T). 

Asynchronous update enables the update sequence 
of the particles to change dynamically and a particle to 
be updated more than once [15]. The change in the 
update sequence offers different levels of available 
information among the particles, this can prevent the 
particles from being trapped in local optima [15]. This 
is the characteristic manipulated by RA-PSO for 
improving the performance of the original A-PSO 
algorithm. 

Random asynchronous PSO (RA-PSO) is a 
variation of A-PSO algorithm [15]. In RA-PSO the 
particles to be updated are chosen randomly with 
repetition allowed. Therefore, a particle can be 
updated more than once or none at all in a particular 
iteration. The randomness causes the swarm to have 
mixture state of particles by the end of each iteration, 
some particles possessing up to date information while 
some holding outdated information. This provides 
various degrees of information within the swarm. 
Since the selection of the particles is done randomly, 
the information flow is different from one iteration to 
another. This improves the exploration of the particles 
and prevents them from being trapped in local optima. 

 

 
 

Figure 4. The flowchart of the RA-PSO. 

 
The RA-PSO algorithm is presented in Figure 4. In 

each iteration, particles to be evaluated are chosen P 
times. Every time a particle is chosen, its fitness is 
evaluated followed by the velocity and position 
update. This is repeated for T iterations or until ideal 
fitness is obtained. Therefore, in a single run, RA-PSO 
performs at most (P×T) fitness evaluations. This is 
similar to S-PSO and A-PSO algorithms. 

The RA-PSO algorithm performs better than the 
original A-PSO in unimodal problems and as good as 
the original A-PSO in multimodal problems [15]. It 
also has a faster convergence rate than A-PSO. In a 
large neighbourhood swarm, RA-PSO performs better 
than S-PSO, as the randomness and asynchronicity of 
the particles are preventing them from being stagnant 
in local minima, which is the problem suffered by S-
PSO.  
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Figure 5. The flowchart of the RSA-PSO. 

 
 

The Proposed Random Synchronous 
Asynchronous PSO 

The advantage of synchronous update is strong 
exploitation which leads to good solution. Meanwhile, 
the variety of gBest information used in asynchronous 
update contributes to the strength of A-PSO which is 
diversity and exploration. RA-PSO enhances the 
exploration of APSO through randomization of the 
particles’ update sequence. In the proposed random 
synchronous-asynchronous PSO (RSA-PSO), the 
advantage and strength of the synchronous, 
asynchronous, and random update methods are 
exploited so that a better variation of PSO is attained. 
The RSA-PSO update strategy does not fall within 
synchronous or asynchronous update, it is a hybrid 
method. The proposed algorithm is shown in Figure 5. 

The algorithm starts with initialization of particles. 
The particles in RSA-PSO are divided into C groups, 
which consist of N number of particles each. Initially, 
C central particles, one for each group, are randomly 

placed in the search space. This is followed by random 
placement of (N-1) number of members for each 
group. The random placements of the members are 
within the radius of ±∆ from the central particle of 
their respective group. The ∆ is defined as the initial 
maximum distance of a particle from the central 
particle of its group. This parameter is only used once 
throughout the execution of the algorithm, which is 
during the initialization phase. The membership of the 
groups’ remains fixed throughout the search process. 
The total number of particles, P, for RSA-PSO 
algorithm is C×N. 

In a single iteration, the algorithm randomly 
chooses the groups to be updated. The selection is 
done one by one for C times. Similar to RA-PSO, 
repetition is allowed. Therefore, there is a possibility 
that a group is updated more than once in a single 
iteration or may not be selected at all. Thus, at the end 
of an iteration, the swarm may consist of groups 
having updated velocities and positions, and groups 
with velocities and positions from previous search.
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Table 1. Parameter setting. 

Parameter Value 
Number of runs 50 
Number of iterations 2000 
Number of particles 100 
Velocity clamping, Vmax 100 
Inertia weight, 𝜔 0.9-0.5 
Cognitive coefficient, c1 2 
Social coefficient, c2 2 

Table 2. Setting for the additional parameters in RSA-PSO. 

Parameter Value 
Number of group, C 10 
Group size (particles per group) 10 
Initial distance to group centre, ∆ 50% of the size of the search space 

 
 

The particles of a chosen group, G, are updated 
synchronously. The performance of all the members 
of the group is evaluated before their 𝑝𝐵𝑒𝑠𝑡!&  are 
identified. The 𝑐𝐵𝑒𝑠𝑡&  is the best 𝑝𝐵𝑒𝑠𝑡!&  of group G. 
The velocity at iteration t of particle ith that belongs to 
group G, 𝑣!&(𝑡), is updated using the following 
equation: 

 
𝑣!&(𝑡) = 𝜔𝑣!&(𝑡 − 1) 

+𝑐"𝑟" 4𝑐𝐵𝑒𝑠𝑡&(𝑡) − 𝑥!&(𝑡 − 1)5 

   +𝑐#𝑟# 4𝑔𝐵𝑒𝑠𝑡(𝑡) − 𝑥!&(𝑡 − 1)5            (3) 
 
Equation (3) shows that the information used to 

update the velocity are the current group’s best,  
cBestG(t) and the global best, gBest(t). The best 
cBestG(t) is the gBest(t). The position is updated as 
follows: 

 
𝑥!&(𝑡) = 𝑣!&(𝑡) + 𝑥!&(𝑡 − 1)                                   (4)                                  

 
In RSA-PSO, when a group is chosen, the particles 

within the group are evaluated. Hence, fitness function 
is called for N times per group. The groups to be 
updated are chosen randomly for C times per iteration. 
Therefore, in total, C×N times of fitness evaluation is 
conducted every iteration. C×N is equivalent to total 
number of particles in the swarm, P. Thus, the 
maximum number of fitness evaluation by RSA-PSO 
in a run which is limited to T iteration is (P×T). This 
is similar as S-PSO, A-PSO, and RA-PSO. 

Experiments 
The proposed RSA-PSO and the existing S-PSO, 

A-PSO, and RA-PSO were implemented using 
MATLAB. The parameter settings are summarized in 

Table I. Every experiment was subjected to 50 runs. 
The velocity of every particle is initialized randomly 
within the velocity clamping range, ±Vmax . The 
position of the particles was randomly initialized 
within the search space. A linear decreasing inertia 
weight ranging from 0.9 to 0.5 was employed. The 
cognitive and social learning factors were set to 2. The 
search was terminated once the number of iterations 
reaches 2000 or ideal fitness is attained. The 
parameters setting for the additional parameters in 
RSAPSO are given in Table II. Exclusively for RSA-
PSO, the members of the groups were initialized 
randomly around the groups’ central particles and 
based on ∆ value. 

The CEC2014’s benchmark functions for single 
objective real-parameter numerical optimization are 
used here to evaluate the performance of RSA-PSO, 
S-PSO, A-PSO and RA-PSO. The benchmark 
functions consist of three rotated unimodal functions, 
thirteen multimodal problems, six hybrid functions 
and eight composition functions. The functions are 
listed in Table III. The multimodal functions have 
many local optima, the functions are either shifted or 
shifted and rotated, which increase their complexity. 
The hybrid functions consist of more than one 
function, thus naturally are more difficult to be solved. 
Composition functions combined unimodal, 
multimodal and hybrid functions with local optima 
trapped is set at the origin. The value of N shown in 
Table III for hybrid and composite functions indicates 
number of the basic functions used. 

The solutions found by the algorithms tested are 
presented using boxplot. A boxplot shows the quality 
and also the consistency of an algorithm’s 
performance. The size of the box shows the magnitude 
of the variance of the results. Thus, smaller box 
suggests a more consistent performance of an 
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algorithm. Since the benchmark functions used in this 
study are minimisation problems, a lower boxplot is 
desirable as it indicates better quality of the solutions 
found. 

The boxplots show that the solutions found are not 
normally distributed, therefore, the algorithms are 
compared using nonparametric test option in the 
KEEL software [18]. The test chosen is the Friedman 
test with significance level α = 0.05. This test is 
suitable for comparison of more than two algorithms 
[19]. If the Friedman statistic value is lesser than the 
critical value, this signifies the algorithms tested are 
identical to each other. Otherwise, significant 
differences exist and the algorithms are then compared 
using a post hoc procedure. The Holm post hoc 
procedure is employed in this work to pin point where 
does the difference occurs. 

Results and Discussions 
RSA-PSO vs S-PSO, A-PSO, RA-PSO 

The boxplots in Figure 6 show the quality of the 
results for unimodal test functions obtained by the S-
PSO, A-PSO, RA-PSO, and the proposed RSA-PSO 
algorithms. It can be observed from the figures that 
RSA-PSO consistently gives good performance in all 
unimodal functions tested with small variance. It has 
better performance than A-PSO and RA-PSO. In 
comparison to the performance of S-PSO, RSA-PSO 
is as good as S-PSO. 

The results of the test on multimodal problems are 
shown in Figure 7. Similar to the boxplots for 
unimodal test functions, the boxplots show that the 
variance of the solutions found by RSA-PSO and S-
PSO are small. The variance proves the consistency of 
their performance. The quality of the solutions found 
by RSA-PSO is on par with S-PSO and better than A-
PSO and RA-PSO. 

Same observation are made for hybrid functions 
(Figure 8) and composition function (Figure 9). RSA-
PSO is on par with S-PSO. Both update sequence have 
low variance signifying consistent performance, while 
A-PSO and RA-PSO perform poorer and with bigger 
variance. 

The algorithms’ mean for each test functions and 
their average rank are shown is Table IV. The means 
are shown in the boxplots using the * symbol. The 
Friedman statistic value shows that significant 
differences exist between the algorithms. Therefore, 
the Holm procedure is conducted. The results in Table 
V show that the performance of RSA-PSO is on par 
with S-PSO and both RSA-PSO and S-PSO have 
significant difference in performance with A-PSO and 
RAPSO. Good performance of RSA-PSO is 
contributed by the fact that the particles are learning 
and exploiting information from two particles with 
better information, which are gBest and cBest. The 
random asynchronous update of the groups provides 
exploration in RSA-PSO thus avoiding premature 
convergence. 

 
 

 
Figure 6. Result of experiments on unimodal functions. 
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Figure 7. Result of experiments on multimodal functions. 
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Table 3. The CEC2014 test suite. 

Function Type of function Ideal fitness 
f1 Rotated High Conditioned Elliptic 100 
f2 Rotated Bent Cigar 200 
f3 Rotated Discus 300 
f4 Shifted and Rotated Rosenbrock’s 400 
f5 Shifted and Rotated Ackley’s 500 
f6 Shifted and Rotated Weierstrass 600 
f7 Shifted and Rotated Griewank’s 700 
f8 Shifted Rastrigin’s 800 
f9 Shifted and Rotated Rastrigin’s 900 
f10 Shifted Schwefel’s 1000 
f11 Shifted and Rotated Schwefel’s 1100 
f12 Shifted and Rotated Katsura 1200 
f13 Shifted and Rotated HappyCat 1300 
f14 Shifted and Rotated HGBat 1400 
f15 Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s 1500 
f16 Shifted and Rotated Expanded Scaffer’s 1600 
f17 Hybrid function 1 (N=3) 1700 
f18 Hybrid function 2 (N=3) 1800 
f19 Hybrid function 3 (N=4) 1900 
f20 Hybrid function 4 (N=4) 2000 
f21 Hybrid function 5 (N=5) 2100 
f22 Hybrid function 6 (N=6) 2200 
f23 Composition function 1 (N=5) 2300 
f24 Composition function 2 (N=3) 2400 
f25 Composition function 3 (N=3) 2500 
f26 Composition function 4 (N=5) 2600 
f27 Composition function 5 (N=5) 2700 
f28 Composition function 6 (N=5) 2800 
f29 Composition function 7 (N=3) 2900 
f30 Composition function 8 (N=3) 3000 

 

Table 4. Average result. 

Function S-PSO 
 
A-PSO 

 
RA-PSO 

 
RSA-PSO 

f1 23317467.9762 96780027600.4945 96362016971.3520 20791531.9021 
f2 1617145.2788 715631068852.1800 733952978460.1720 225780.7340 
f3 20228.3905 25847082349.5529 26382211765.3402 7162.2740 
f4 640.0601 856055.8889 886953.4268 643.5569 
f5 521.0929 521.9687 521.9714 520.3845 
f6 629.9419 714.8964 715.2115 629.3239 
f7 700.0133 7721.0542 7500.9251 700.0159 
f8 861.7606 2330.8271 2337.1607 860.9943 
f9 1050.6320 3191.1875 3220.4362 1056.6355 
f10 2592.7238 25277.0029 25257.9856 3048.3761 
f11 8036.2319 25106.3156 25075.7069 7620.5766 
f12 1202.8467 1225.5416 1225.6789 1201.4784 
f13 1300.6240 1324.5121 1325.0278 1300.6324 
f14 1400.5917 3207.6215 3305.0808 1400.5936 
f15 1520.1586 19223967301.7630 18152570714.1591 1528.6849 
f16 1621.6836 1626.0480 1626.0554 1620.7492 
f17 2738876.6182 46499778121.8483 47802762561.2766 2859546.6989 
f18 2697.6237 149643976950.6680 145441630392.0710 2593.0217 
f19 1968.2023 106943.4179 111365.6296 1970.9642 
f20 12246.3069 56038827597.0697 61576967650.9417 5040.4760 
f21 1850848.7084 30661865535.3322 31687490044.9671 1291397.7185 
f22 3121.5135 2112075226.7286 1852691609.1719 3111.3453 
f23 2648.0627 24277.1419 25511.0805 2648.0427 
f24 2676.3158 17339.1314 17956.4314 2676.6297 
f25 2721.7840 10137.9569 10200.4733 2722.0877 
f26 2771.4052 12577.4309 12364.0413 2776.4294 
f27 3731.1536 98384.8497 93086.0752 3792.7514 
f28 5374.6678 87626.3895 79320.8276 5287.5968 
f29 11664505.2623 61162227650.7580 61435815978.3012 203485844.1391 
f30 39538.7201 1475809138.3202 1620269889.7606 40752.5674 
Average 
Friedman 
Rank 

1.5 
 
3.3333 

 
3.6667 

 
1.5 
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Figure 8. Result of experiments on hybrid functions. 
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Figure 9. Result of experiments on composite functions. 
 

Table 5. Statistical analysis. 

Algorithms z 
 
p 

 
Holm 

RA-PSO vs. RSA-PSO 6.5 0 0.008333 
S-PSO vs RA-PSO 6.5 0 0.01 
A-PSO vs RSA-PSO 5.5 0 0.0125 
S-PSO vs A-PSO 5.5 0 0.16667 
A-PSO vs RA-PSO 1 0.317311 0.025 
S-PSO vs RSA-PSO 0 1 0.0500 
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Conclusions 
 Random synchronous-asynchronous PSO 
algorithm (RSA-PSO) a new method belongs to 
hybrid update strategy is proposed in this paper. The 
particles in RSA-PSO are updated synchronously in 
groups. The groups, however, are chosen randomly 
and asynchronously updated, one group after another. 
A group’s search is led by the group’s best performer, 
cBestG, and the best member of the swarm, gBest. The 
algorithm benefits from good exploitation and fine 
tuning provided by synchronous update, while it takes 
advantage of the exploration in the asynchronous 
update. The exploration is further enhanced by the 
random selection of the group to be updated. 
Statistical analysis performed shows that the 
performance of RSA-PSO is better than A-PSO and 
RA-PSO and on par as S-PSO. 
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