
mekatronika – Journal of Intelligent Manufacturing & Mechatronics
VOL. 01, ISSUE 02, 81 – 92
DOI: https://doi.org/10.15282/mekatronika.v1i2.4989

*CORRESPONDING AUTHOR | Nor Azlina Ab. Aziz | * azlina.aziz@mmu.edu.my
81

Random Synchronous Asynchronous PSO – A Particle Swarm
Optimization Algorithm with a New Iteration Strategy
Nor Azlina Ab. Aziz1, Nor Hidayati Abd Aziz1, Tasiransurini Ab Rahman2, Norrima Mokhtar3, and Marizan Mubin3

1Faculty of Engineering and Technology, Multimedia University, Melaka, Malaysia.
2Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia.
3Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia.

ARTICLE HISTORY
Received: 3 March 2019

Accepted: 6 Jun 2019

KEYWORDS
PSO

Random
Synchronous

Asynchronous

Introduction
Particle swarm optimisation (PSO) algorithm, was

introduced by Kennedy and R. Eberhart in 1995 [1]. It
looks for optimal solution of an optimisation problem
by mimicking the social behaviour seen in nature, such
as flock of birds looking for food. In PSO, these
organisms are represented by a swarm of agents called
particles. The particles move within the search area
looking for optimal solution by updating their velocity
and position. These values are influenced by the
personal experience of the particles and their social
interaction.

PSO has gained a lot of interest since its
introduction. Numerous researches had been
conducted involving PSO. Some of these works
focuses on improvement of the algorithm through
introduction of new parameters such as inertia weight
[2] and constriction factor [3]. The PSO has also been
improved to solve specific type of problems such as
multiobjective optimization [4], discrete optimization
[5-6] and dynamic optimization problem [7-8].
Application of PSO in solving real world optimization
problem is also a popular trend. For example PSO had
been successfully applied in robotics [9], biomedical
optimization [10], and wireless sensor networks [11].

However, there are a few fundamental aspects of
PSO which are not getting much attention, such as the
synchronicity of the particle update sequence, which
is also known as iteration strategy [12]. The traditional
PSO iteration strategies can be divided into two
categories, synchronous and asynchronous, as shown
in Figure 1.

In the original PSO, a particle’s information on the
neighbourhood’s best found solution is updated after
the fitness of the whole swarm is evaluated. This
version of PSO algorithm is known as synchronous
PSO (S-PSO). The synchronous update in S-PSO
provides perfect information on the fitness of the
whole swarm based on the members’ positions. Thus,
allowing the swarm to choose the best neighbour and
exploit the information of the best position provided
by this neighbour. However, this could cause the
particles to converge too fast. Many works has
reported that synchronous update leads to a strong
exploitation by S-PSO. However, according to [13], if
the improvement of the best found solution is
marginal, the synchronous update is not only reducing
the exploration, but it also hinders the particles from
exploiting and benefiting from the information
available.

ABSTRACT –Particle swarm optimisation (PSO) is a population-based stochastic optimisation
algorithm. Traditionally the particles update sequence for PSO can be categorized into two groups,
synchronous (S-PSO) or asynchronous (A-PSO) update. In S-PSO, the particles’ performances are
evaluated before their velocity and position are updated, while in A-PSO, each particle’s velocity and
position is updated immediately after individual performance is evaluated. In another study, a random
asynchronous PSO (RA-PSO) has been proposed. In RA-PSO, particles are randomly chosen to be
updated asynchronously, the randomness improves swarm’s exploration. RA-PSO belongs to the
asynchronous group. In this paper, a new category; hybrid update sequence is proposed. The new
update sequence exploits the advantages of synchronous, asynchronous, and random update methods.
The proposed sequence is termed as, random synchronous-asynchronous PSO (RSA-PSO). RSA-PSO
divides the particles into groups. The groups are subjected to random asynchronous update, while the
particles within a chosen group are updated synchronously. The performance of RSA-PSO is compared
with the existing S-PSO, A-PSO, and RA-PSO using CEC2014’s benchmark functions. The results show
that RSA-PSO is superior to both A-PSO and RA-PSO, and as good as S-PSO

ORIGINAL ARTICLE

mekatronika – Journal of Intelligent Manufacturing & Mechatronics
VOL. 01, ISSUE 02, 81 – 92
DOI: https://doi.org/10.15282/mekatronika.v1i2.2504

*CORRESPONDING AUTHOR | Nor Azlina Ab. Aziz | * azlina.aziz@mmu.edu.my
 82

Figure 1. Categories of PSO’s sequence update.

Another variation of PSO, known as asynchronous

PSO (A-PSO), has been discussed in [14]. In A-PSO,
the particles evaluate their fitness and update their
velocity and position on their own without the need to
synchronize with the whole swarm. As soon as a
particle finished evaluating its fitness, it immediately
identifies the best solution of the whole swarm and
updates its velocity and position. Hence the particles
updated at the beginning of an iteration use more
information from the previous iteration, while
particles at the end of the iteration use more
information from the same iteration to determine the
best solution of the swarm. This allows various leads
from different best solutions, thus providing more
exploration by the swarm.

Recently, random A-PSO (RA-PSO) has been
introduced [15-16]. The RA-PSO belongs to
asynchronous update group. In RAPSO, particles to be
updated are selected randomly. Therefore, in an
iteration, some particles might be updated more than
once while other particles may not be updated at all.
The randomness helps to prevent particles from being
trapped in local optima and encourage more
exploration. This is due to various degree of
information within the swarm, because some particles
might not be updated for several iterations thus
possessing outdated information while others might be
updated more than once in a single iteration.

In this study, synchronous, asynchronous, and
random updates are merged so that the advantages of
each of these methods can be utilized and the
weaknesses can be overcomed. The proposed random
synchronous-asynchronous PSO (RSA-PSO)
algorithm divides the particles into smaller groups.
The group to be updated are randomly chosen one at a
time, asynchronously. The particles within a chosen
group are updated synchronously. The search for the
optimal solution by the particles in RSA-PSO is led by
the best member of the groups and the swarm’s best.

The RSA-PSO improves the performance of PSO by
balancing the exploitation provided by synchronous
update, with the exploration by random asynchronous
update. The RSA-PSO is a method belongs to new
category of update strategy; hybrid update strategy.
The CEC2014’s benchmark functions for single
objective real-parameter numerical optimization are
used to evaluate the performance of RSA-PSO and the
existing methods, S-PSO, A-PSO and RA-PSO. The
results of the existing methods show that stronger
exploitation in S-PSO is crucial in ensuring good
performance. The RSA-PSO performs as good as S-
PSO which is the best update strategy among the
traditional methods.

PSO’s Update Sequence
Traditionally PSO is either implemented as a

synchronous update algorithm or asynchronous
update. Synchronous update method is the typical
method used in PSO while asynchronous update is
another available approach. Asynchronous update is a
more accurate natural model, it increases the potential
of parallelization of an algorithm [17].

Synchronous update
In PSO, the search for optimal solution is

conducted by a swarm of P particles. At time t, particle
ith has a position, xi(t), and velocity, vi(t). The position
represents a solution suggested by the particle while
velocity is the rate of change to the next position with
respect to the current position. At the start of the
algorithm, these two values (position and velocity) are
randomly initialised. In the subsequent iterations the
search process is conducted by updating these values
until a position with ideal fitness is attained or
maximum number of iteration, T, is reached. The
position and velocity are updated using the following
equations:

 mekatronika – Journal of Intelligent Manufacturing & Mechatronics

 journal.ump.edu.my/mekatronika t 83

𝑣!(𝑡) = 𝜔𝑣!(𝑡 − 1) + 𝑐"𝑟",𝑝𝐵𝑒𝑠𝑡!(𝑡) − 𝑥!(𝑡 − 1)2

+𝑐#𝑟#,𝑔𝐵𝑒𝑠𝑡(𝑡) − 𝑥!(𝑡 − 1)2 (1)

𝑥!(𝑡) = 𝑣!(𝑡) + 𝑥!(𝑡 − 1) (2)

To prevent the particles from venturing too far
from the feasible region, the vi(t) value is clamped to
±Vmax. If the value of Vmax is too large, the exploration
range is too wide. However, if it is too small, particles
will favour the local search. In equation (1), c1 and c2
are the learning factors that control the effect of the
cognitive and social influence on a particle. Typically,
both c1 and c2 are set to 2. Two independent random
numbers r1 and r2 in the range of [0.0, 1.0] are
incorporated in the velocity equation. These random
terms provide stochastic behaviour to the particles.
Inertia weight, 𝜔, is a term added to control the
particles momentum. The particles can switch to fine
tuning by manipulating 𝜔 when a good area is found.
To ensure convergence, a time decreasing inertia
weight is more favourable than a fixed inertia weight.
This is because a larger inertia weight at the beginning
helps to find a good area through exploration and a
small inertia weight towards the end (when typically a
good area is already found) facilitates fine tuning.

An individual success in PSO is affected not only
by the particle’s own effort and experience but also by
the information shared by its surrounding neighbours.
As shown in equation (1), the particle’s velocity is
updated using pBesti(t), which is the best position
found so far by particle ith and gBest(t), which is the
best position found by the swarm up to t th iteration.

The particle’s position, xi(t), is updated using
equation (2), in which a particle’s next search is
launched from its previous position, xi(t-1). Typically,
xi(t) is bounded to prevent the particles from searching
in an infeasible region. The fitness of xi(t) is evaluated
by a problem-dependent fitness function. Therefore,
for a swarm with P number of particles, the fitness
evaluation is done P times per iteration. Thus, the
maximum number of fitness evaluation by S-PSO in a
run is (P×T).A new position, xi(t) with a better fitness
than the gBest(t-1) or pBesti(t-1) or both is saved as
gBest(t) or pBesti(t), otherwise the old values are
adopted.

Since in S-PSO the pBesti and gBest are updated
after all the particles are evaluated, this version of PSO
is also known as synchronous PSO (S-PSO).
Synchronous update allows the particles to have a
complete view of the whole swarm positions and their
fitness before selecting gBest. Thus, allowing the
swarm to exploit this information so that a better
solution can be found. However, this may cause the
particles in S-PSO to converge faster and prematurely.
The S-PSO algorithm is shown in Figure 2.

Figure 2. The flowchart of the S-PSO.

Asynchronous update
In synchronous update a particle needs to wait for

the whole swarm to be evaluated before it can move to
a new position and continue its search. Hence, the first
evaluated particle is idle for the longest time, waiting
for the whole swarm to be updated. PSO is a nature
inspired algorithm. In nature, an individual is typically
free to move without the need to synchronize its move
with others. This concept is adopted in asynchronous
update, where the particles are updated independently
without synchronization with the whole swarm.

The flowchart in Figure 3 shows the A-PSO
algorithm. A particle evaluates its fitness. After that
the particle immediately selects gBest and updates its
pBest. The gBest is selected depending on the swarm
conditions during a particular particle’s update
process. Using the latest gBest and pBest a particle
updates its velocity and position using the same
equations as S-PSO. This process is then continued by
the next particles until either ideal solution is found or
T iterations are reached. Due to lack of synchronicity,
in a single iteration the particles might use various
values of gBest, leading to more exploration. Other
than the variation of gBest used, the lack of
synchronicity in A-PSO solves the issue of the idle
particles faced in S-PSO.

Nor Azlina Ab. Aziz, Nor Hidayati Abd Aziz, Tasiransurini Ab Rahman, Norrima Mokhtar, and Marizan Mubin

u journal.ump.edu.my/mekatronika 84

Figure 3. The flowchart of the A-PSO.

Even though, the flow of A-PSO is different than

S-PSO, the fitness function is still called for P times
per iteration, once for each particle. This is similar to
S-PSO. Therefore, the maximum number of fitness
evaluation is (P×T).

Asynchronous update enables the update sequence
of the particles to change dynamically and a particle to
be updated more than once [15]. The change in the
update sequence offers different levels of available
information among the particles, this can prevent the
particles from being trapped in local optima [15]. This
is the characteristic manipulated by RA-PSO for
improving the performance of the original A-PSO
algorithm.

Random asynchronous PSO (RA-PSO) is a
variation of A-PSO algorithm [15]. In RA-PSO the
particles to be updated are chosen randomly with
repetition allowed. Therefore, a particle can be
updated more than once or none at all in a particular
iteration. The randomness causes the swarm to have
mixture state of particles by the end of each iteration,
some particles possessing up to date information while
some holding outdated information. This provides
various degrees of information within the swarm.
Since the selection of the particles is done randomly,
the information flow is different from one iteration to
another. This improves the exploration of the particles
and prevents them from being trapped in local optima.

Figure 4. The flowchart of the RA-PSO.

The RA-PSO algorithm is presented in Figure 4. In

each iteration, particles to be evaluated are chosen P
times. Every time a particle is chosen, its fitness is
evaluated followed by the velocity and position
update. This is repeated for T iterations or until ideal
fitness is obtained. Therefore, in a single run, RA-PSO
performs at most (P×T) fitness evaluations. This is
similar to S-PSO and A-PSO algorithms.

The RA-PSO algorithm performs better than the
original A-PSO in unimodal problems and as good as
the original A-PSO in multimodal problems [15]. It
also has a faster convergence rate than A-PSO. In a
large neighbourhood swarm, RA-PSO performs better
than S-PSO, as the randomness and asynchronicity of
the particles are preventing them from being stagnant
in local minima, which is the problem suffered by S-
PSO.

 mekatronika – Journal of Intelligent Manufacturing & Mechatronics

 journal.ump.edu.my/mekatronika t 85

Figure 5. The flowchart of the RSA-PSO.

The Proposed Random Synchronous
Asynchronous PSO

The advantage of synchronous update is strong
exploitation which leads to good solution. Meanwhile,
the variety of gBest information used in asynchronous
update contributes to the strength of A-PSO which is
diversity and exploration. RA-PSO enhances the
exploration of APSO through randomization of the
particles’ update sequence. In the proposed random
synchronous-asynchronous PSO (RSA-PSO), the
advantage and strength of the synchronous,
asynchronous, and random update methods are
exploited so that a better variation of PSO is attained.
The RSA-PSO update strategy does not fall within
synchronous or asynchronous update, it is a hybrid
method. The proposed algorithm is shown in Figure 5.

The algorithm starts with initialization of particles.
The particles in RSA-PSO are divided into C groups,
which consist of N number of particles each. Initially,
C central particles, one for each group, are randomly

placed in the search space. This is followed by random
placement of (N-1) number of members for each
group. The random placements of the members are
within the radius of ±∆ from the central particle of
their respective group. The ∆ is defined as the initial
maximum distance of a particle from the central
particle of its group. This parameter is only used once
throughout the execution of the algorithm, which is
during the initialization phase. The membership of the
groups’ remains fixed throughout the search process.
The total number of particles, P, for RSA-PSO
algorithm is C×N.

In a single iteration, the algorithm randomly
chooses the groups to be updated. The selection is
done one by one for C times. Similar to RA-PSO,
repetition is allowed. Therefore, there is a possibility
that a group is updated more than once in a single
iteration or may not be selected at all. Thus, at the end
of an iteration, the swarm may consist of groups
having updated velocities and positions, and groups
with velocities and positions from previous search.

mekatronika – Journal of Intelligent Manufacturing & Mechatronics
VOL. 01, ISSUE 02, 81 – 92
DOI: https://doi.org/10.15282/mekatronika.v1i2.2504

*CORRESPONDING AUTHOR | Nor Azlina Ab. Aziz | * azlina.aziz@mmu.edu.my
 86

Table 1. Parameter setting.

Parameter Value
Number of runs 50
Number of iterations 2000
Number of particles 100
Velocity clamping, Vmax 100
Inertia weight, 𝜔 0.9-0.5
Cognitive coefficient, c1 2
Social coefficient, c2 2

Table 2. Setting for the additional parameters in RSA-PSO.

Parameter Value
Number of group, C 10
Group size (particles per group) 10
Initial distance to group centre, ∆ 50% of the size of the search space

The particles of a chosen group, G, are updated
synchronously. The performance of all the members
of the group is evaluated before their 𝑝𝐵𝑒𝑠𝑡!& are
identified. The 𝑐𝐵𝑒𝑠𝑡& is the best 𝑝𝐵𝑒𝑠𝑡!& of group G.
The velocity at iteration t of particle ith that belongs to
group G, 𝑣!&(𝑡), is updated using the following
equation:

𝑣!&(𝑡) = 𝜔𝑣!&(𝑡 − 1)

+𝑐"𝑟" 4𝑐𝐵𝑒𝑠𝑡&(𝑡) − 𝑥!&(𝑡 − 1)5

 +𝑐#𝑟# 4𝑔𝐵𝑒𝑠𝑡(𝑡) − 𝑥!&(𝑡 − 1)5 (3)

Equation (3) shows that the information used to

update the velocity are the current group’s best,
cBestG(t) and the global best, gBest(t). The best
cBestG(t) is the gBest(t). The position is updated as
follows:

𝑥!&(𝑡) = 𝑣!&(𝑡) + 𝑥!&(𝑡 − 1) (4)

In RSA-PSO, when a group is chosen, the particles

within the group are evaluated. Hence, fitness function
is called for N times per group. The groups to be
updated are chosen randomly for C times per iteration.
Therefore, in total, C×N times of fitness evaluation is
conducted every iteration. C×N is equivalent to total
number of particles in the swarm, P. Thus, the
maximum number of fitness evaluation by RSA-PSO
in a run which is limited to T iteration is (P×T). This
is similar as S-PSO, A-PSO, and RA-PSO.

Experiments
The proposed RSA-PSO and the existing S-PSO,

A-PSO, and RA-PSO were implemented using
MATLAB. The parameter settings are summarized in

Table I. Every experiment was subjected to 50 runs.
The velocity of every particle is initialized randomly
within the velocity clamping range, ±Vmax . The
position of the particles was randomly initialized
within the search space. A linear decreasing inertia
weight ranging from 0.9 to 0.5 was employed. The
cognitive and social learning factors were set to 2. The
search was terminated once the number of iterations
reaches 2000 or ideal fitness is attained. The
parameters setting for the additional parameters in
RSAPSO are given in Table II. Exclusively for RSA-
PSO, the members of the groups were initialized
randomly around the groups’ central particles and
based on ∆ value.

The CEC2014’s benchmark functions for single
objective real-parameter numerical optimization are
used here to evaluate the performance of RSA-PSO,
S-PSO, A-PSO and RA-PSO. The benchmark
functions consist of three rotated unimodal functions,
thirteen multimodal problems, six hybrid functions
and eight composition functions. The functions are
listed in Table III. The multimodal functions have
many local optima, the functions are either shifted or
shifted and rotated, which increase their complexity.
The hybrid functions consist of more than one
function, thus naturally are more difficult to be solved.
Composition functions combined unimodal,
multimodal and hybrid functions with local optima
trapped is set at the origin. The value of N shown in
Table III for hybrid and composite functions indicates
number of the basic functions used.

The solutions found by the algorithms tested are
presented using boxplot. A boxplot shows the quality
and also the consistency of an algorithm’s
performance. The size of the box shows the magnitude
of the variance of the results. Thus, smaller box
suggests a more consistent performance of an

 mekatronika – Journal of Intelligent Manufacturing & Mechatronics

 journal.ump.edu.my/mekatronika t 87

algorithm. Since the benchmark functions used in this
study are minimisation problems, a lower boxplot is
desirable as it indicates better quality of the solutions
found.

The boxplots show that the solutions found are not
normally distributed, therefore, the algorithms are
compared using nonparametric test option in the
KEEL software [18]. The test chosen is the Friedman
test with significance level α = 0.05. This test is
suitable for comparison of more than two algorithms
[19]. If the Friedman statistic value is lesser than the
critical value, this signifies the algorithms tested are
identical to each other. Otherwise, significant
differences exist and the algorithms are then compared
using a post hoc procedure. The Holm post hoc
procedure is employed in this work to pin point where
does the difference occurs.

Results and Discussions
RSA-PSO vs S-PSO, A-PSO, RA-PSO

The boxplots in Figure 6 show the quality of the
results for unimodal test functions obtained by the S-
PSO, A-PSO, RA-PSO, and the proposed RSA-PSO
algorithms. It can be observed from the figures that
RSA-PSO consistently gives good performance in all
unimodal functions tested with small variance. It has
better performance than A-PSO and RA-PSO. In
comparison to the performance of S-PSO, RSA-PSO
is as good as S-PSO.

The results of the test on multimodal problems are
shown in Figure 7. Similar to the boxplots for
unimodal test functions, the boxplots show that the
variance of the solutions found by RSA-PSO and S-
PSO are small. The variance proves the consistency of
their performance. The quality of the solutions found
by RSA-PSO is on par with S-PSO and better than A-
PSO and RA-PSO.

Same observation are made for hybrid functions
(Figure 8) and composition function (Figure 9). RSA-
PSO is on par with S-PSO. Both update sequence have
low variance signifying consistent performance, while
A-PSO and RA-PSO perform poorer and with bigger
variance.

The algorithms’ mean for each test functions and
their average rank are shown is Table IV. The means
are shown in the boxplots using the * symbol. The
Friedman statistic value shows that significant
differences exist between the algorithms. Therefore,
the Holm procedure is conducted. The results in Table
V show that the performance of RSA-PSO is on par
with S-PSO and both RSA-PSO and S-PSO have
significant difference in performance with A-PSO and
RAPSO. Good performance of RSA-PSO is
contributed by the fact that the particles are learning
and exploiting information from two particles with
better information, which are gBest and cBest. The
random asynchronous update of the groups provides
exploration in RSA-PSO thus avoiding premature
convergence.

Figure 6. Result of experiments on unimodal functions.

Nor Azlina Ab. Aziz, Nor Hidayati Abd Aziz, Tasiransurini Ab Rahman, Norrima Mokhtar, and Marizan Mubin

u journal.ump.edu.my/mekatronika 88

Figure 7. Result of experiments on multimodal functions.

 mekatronika – Journal of Intelligent Manufacturing & Mechatronics

 journal.ump.edu.my/mekatronika t 89

Table 3. The CEC2014 test suite.

Function Type of function Ideal fitness
f1 Rotated High Conditioned Elliptic 100
f2 Rotated Bent Cigar 200
f3 Rotated Discus 300
f4 Shifted and Rotated Rosenbrock’s 400
f5 Shifted and Rotated Ackley’s 500
f6 Shifted and Rotated Weierstrass 600
f7 Shifted and Rotated Griewank’s 700
f8 Shifted Rastrigin’s 800
f9 Shifted and Rotated Rastrigin’s 900
f10 Shifted Schwefel’s 1000
f11 Shifted and Rotated Schwefel’s 1100
f12 Shifted and Rotated Katsura 1200
f13 Shifted and Rotated HappyCat 1300
f14 Shifted and Rotated HGBat 1400
f15 Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s 1500
f16 Shifted and Rotated Expanded Scaffer’s 1600
f17 Hybrid function 1 (N=3) 1700
f18 Hybrid function 2 (N=3) 1800
f19 Hybrid function 3 (N=4) 1900
f20 Hybrid function 4 (N=4) 2000
f21 Hybrid function 5 (N=5) 2100
f22 Hybrid function 6 (N=6) 2200
f23 Composition function 1 (N=5) 2300
f24 Composition function 2 (N=3) 2400
f25 Composition function 3 (N=3) 2500
f26 Composition function 4 (N=5) 2600
f27 Composition function 5 (N=5) 2700
f28 Composition function 6 (N=5) 2800
f29 Composition function 7 (N=3) 2900
f30 Composition function 8 (N=3) 3000

Table 4. Average result.

Function S-PSO

A-PSO

RA-PSO

RSA-PSO

f1 23317467.9762 96780027600.4945 96362016971.3520 20791531.9021
f2 1617145.2788 715631068852.1800 733952978460.1720 225780.7340
f3 20228.3905 25847082349.5529 26382211765.3402 7162.2740
f4 640.0601 856055.8889 886953.4268 643.5569
f5 521.0929 521.9687 521.9714 520.3845
f6 629.9419 714.8964 715.2115 629.3239
f7 700.0133 7721.0542 7500.9251 700.0159
f8 861.7606 2330.8271 2337.1607 860.9943
f9 1050.6320 3191.1875 3220.4362 1056.6355
f10 2592.7238 25277.0029 25257.9856 3048.3761
f11 8036.2319 25106.3156 25075.7069 7620.5766
f12 1202.8467 1225.5416 1225.6789 1201.4784
f13 1300.6240 1324.5121 1325.0278 1300.6324
f14 1400.5917 3207.6215 3305.0808 1400.5936
f15 1520.1586 19223967301.7630 18152570714.1591 1528.6849
f16 1621.6836 1626.0480 1626.0554 1620.7492
f17 2738876.6182 46499778121.8483 47802762561.2766 2859546.6989
f18 2697.6237 149643976950.6680 145441630392.0710 2593.0217
f19 1968.2023 106943.4179 111365.6296 1970.9642
f20 12246.3069 56038827597.0697 61576967650.9417 5040.4760
f21 1850848.7084 30661865535.3322 31687490044.9671 1291397.7185
f22 3121.5135 2112075226.7286 1852691609.1719 3111.3453
f23 2648.0627 24277.1419 25511.0805 2648.0427
f24 2676.3158 17339.1314 17956.4314 2676.6297
f25 2721.7840 10137.9569 10200.4733 2722.0877
f26 2771.4052 12577.4309 12364.0413 2776.4294
f27 3731.1536 98384.8497 93086.0752 3792.7514
f28 5374.6678 87626.3895 79320.8276 5287.5968
f29 11664505.2623 61162227650.7580 61435815978.3012 203485844.1391
f30 39538.7201 1475809138.3202 1620269889.7606 40752.5674
Average
Friedman
Rank

1.5

3.3333

3.6667

1.5

Nor Azlina Ab. Aziz, Nor Hidayati Abd Aziz, Tasiransurini Ab Rahman, Norrima Mokhtar, and Marizan Mubin

u journal.ump.edu.my/mekatronika 90

Figure 8. Result of experiments on hybrid functions.

 mekatronika – Journal of Intelligent Manufacturing & Mechatronics

 journal.ump.edu.my/mekatronika t 91

Figure 9. Result of experiments on composite functions.

Table 5. Statistical analysis.

Algorithms z

p

Holm

RA-PSO vs. RSA-PSO 6.5 0 0.008333
S-PSO vs RA-PSO 6.5 0 0.01
A-PSO vs RSA-PSO 5.5 0 0.0125
S-PSO vs A-PSO 5.5 0 0.16667
A-PSO vs RA-PSO 1 0.317311 0.025
S-PSO vs RSA-PSO 0 1 0.0500

mekatronika – Journal of Intelligent Manufacturing & Mechatronics
VOL. 01, ISSUE 02, 81 – 92
DOI: https://doi.org/10.15282/mekatronika.v1i2.2504

*CORRESPONDING AUTHOR | Nor Azlina Ab. Aziz | * azlina.aziz@mmu.edu.my
 92

Conclusions
 Random synchronous-asynchronous PSO
algorithm (RSA-PSO) a new method belongs to
hybrid update strategy is proposed in this paper. The
particles in RSA-PSO are updated synchronously in
groups. The groups, however, are chosen randomly
and asynchronously updated, one group after another.
A group’s search is led by the group’s best performer,
cBestG, and the best member of the swarm, gBest. The
algorithm benefits from good exploitation and fine
tuning provided by synchronous update, while it takes
advantage of the exploration in the asynchronous
update. The exploration is further enhanced by the
random selection of the group to be updated.
Statistical analysis performed shows that the
performance of RSA-PSO is better than A-PSO and
RA-PSO and on par as S-PSO.

References
[1] Kennedy, J. and Eberhart, R. (1995). Particle swarm

optimization. International Conference on Neural Networks,
vol. 4, pp. 1942-1948.

[2] Shi, Y. and Eberhart, R. (1998). A modified particle swarm
optimizer. IEEE International Conference on Evolutionary
Computation, pp. 69-73.

[3] Clerc, M. and Kennedy, J. (2002). The particle swarm –
explosion, stability, and convergence in a multidimensional
complex space. IEEE Transactions on Evolutionary
Computation, vol. 6, no. 1, pp. 58-73.

[4] Shi, Y. and Eberhart, R. (1998). A modified particle swarm
optimizer. IEEE International Conference on Evolutionary
Computation, pp. 69-73.

[5] Kennedy, J. and Eberhart, R. (1997). A discrete binary
version of the particle swarm algorithm. IEEE International
Conference on Systems, Man, and Cybernetics.

[6] Ibrahim, I., Yusof, Z.M., Nawawi, S.W., Rahim, M.A.A.,
Khalil, K., Ahmad, H., and Ibrahim, Z. (2012). A novel
multi-state particle swarm optimization for discrete
combinatorial optimization problems. Fourth International
Conference on Computational Intelligence, Modelling, and
Simulation, pp. 18-23.

[7] Li, C. and Yang, S. (2012). A general framework of
multipopulation methods with clustering in undetectable
dynamic environments. IEEE Transactions on Evolutionary
Computation, vol. 16, issue 4, pp. 556-577.

[8] Yang, S. and Li, C. (2010). A clustering particle swarm
optimier for locating and tracking multiple optima in
dynamic environments. IEEE Transactions on Evolutionary
Computation, vol. 14, issue 6, pp. 959-974.

[9] Xue, S., Zhang, J. and Zeng, J. (2009). Parallel asynchronous
control strategy for target search with swarm robots.
International Journal of Bio-Inspired Computation, vol. 1, no
3, pp. 151-163.

[10] Mohamad, M.S., Omatu, S., Deris, S., Yoshioka, M.,
Abdullah, A. and Ibrahim, Z. (2013). An enhancement of
binary particle swarm optimization for gene selection in
classifying cancer classes. Algorithms for Molecular
Biology, vol. 8, no. 15.

[11] Aziz, N.A., Mohemmed, A., and Zhang, M. (2010). Particle
swarm optimization for coverage maximization and energy
conservation in wireless sensor networks. Applications of
Evolutionary Computation, pp. 51-60.

[12] Englebrecht, A.P. (2013). Particle swarm optimization:
iteration strategies revisited. BRICS Congress on
Computational Intelligence and 11th Brazillian Congress on
Computational Intelligence, pp. 119-123.

[13] Voglis, C.A., Parsopoulos, K.E., and Lagaris, I.E. (2012).
Particle swarm optimization with deliberate loss of
information. Soft Computing, vol. 16, no. 8, pp. 1373-1392.

[14] Carlisle, A. and Dozier, G. (2001). An off-the-shelf PSO.
Workshop on Particle Swarm Optimization.

[15] Rada-Vilela, J., Zhang, M., and Seah, W. (2011). Random
asynchronous PSO. The 5th International Conference on
Automation, Robotics, and Applications, pp. 220-225.

[16] Rada-Vilela, J., Zhang, M., and Seah, W. (2013). A
performance study on synchronicity and neighborhood size
in particle swarm optimization. Soft Computing, vol. 17, no.
6, pp. 1019-1030.

[17] Koh, B.-I, George, A.D., Haftka, R.T. and Fregly, B.J.
(2006). Parallel asynchronous particle swarm optimization.
International Journal for Numerical Methods in Engineering,
vol. 67, no. 4, pp. 578-595.

[18] http://sci2s.ugr.es/keel/download.php
[19] Derrac, J., Garcia, S., Molina, D. and Herrera, F. (2011). A

practical tutorial on the use of nonparametric statistical tests
as a methodology for comparing evolutionary and swarm
intelligence algorithms. Swarm and Evolutionary
Computation, vol. 1, no. 1, pp. 3-18.

