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Introduction 
Nowadays, increasing of real-world problems 

consist of multiple objectives to be satisfied 
simultaneously makes multi-objective optimisation 
become very important research area for academics 
and engineers [1]. Different from the single objective 
optimisation, a solution to a multi-objective problem 
is a concept rather than a definition [1]. Besides, since 
the last two decade, the most popular multi objective 
approach is multi-objective evolutionary algorithm 
[2]. 

The evolutionary algorithms have been used for the 
optimisation of real-world problems in many 
applications instead of conventional techniques [3]. 
Evolutionary algorithms are promising methods to 
solve complex optimisation problems because their 
optimisation approaches depend on population 
evolution inspired by nature [4]. Besides, they can 
reach a set of approximated Pareto optimal solutions 
within a single run due to their population-based 
search strategy [2]. 

This paper introduces a new multi-objective 
evolutionary algorithm by integrating the particle 
swarm optimisation (PSO) algorithm with a modified 
adaptive bats sonar algorithm (MABSA). The 
proposed algorithm also implemented non-Pareto 

technique; the weighted sum approach for solving the 
multi-objective optimisation problem. The results 
from computer simulations on several multi objective 
optimisation benchmark test functions prove that this 
new hybrid algorithm can serve as a practical multi-
objective evolutionary algorithm option for solving 
multi-objective optimisation problems.  

A Dual-Particle Swarm Optimisation-Modified 
Adaptive Bats Sonar Algorithm (D-PSO-
MABSA) 

A dual-particle swarm optimisation-modified 
adaptive bats sonar algorithm (D-PSO-MABSA) is a 
new hybrid algorithm where a dual-level search 
strategy is adopted through the integration of two 
algorithms; particle swarm optimisation and modified 
adaptive bats sonar algorithm for getting the Pareto 
optimum set of the problem. Figure 1 shows the 
flowchart of this algorithm works. This algorithm was 
developed by [5] that uses the weight sum approach to 
combine all objectives into a single objective where 
the weights are generated randomly from a uniform 
distribution as shown in [5]. By doing so, the Pareto 
optimum set can be attained efficiently as well as 
Pareto front would be estimated properly. 

ABSTRACT – An integrated algorithm for solving multi-objective optimisation problems using a dual-
level searching approach is presented. The proposed algorithm named as dual-particle swarm 
optimisation-modified adaptive bats sonar algorithm (D-PSO-MABSA) where the concept of 
echolocation of a colony of bats to find prey in the modified adaptive bats sonar algorithm is combined 
with the established particle swarm optimisation algorithm. The proposed algorithm combines the 
advantages of both particle swarm optimisation and modified adaptive bats sonar algorithm approach 
to handling the complexity of multi-objective optimisation problems. These include swarm flight attitude 
and swarm searching strategy. The performance of the algorithm is verified through several multi-
objective optimisation benchmark test functions. The acquired results show that the proposed algorithm 
performs well to produce a reliable Pareto front. The proposed algorithm can thus be an effective method 
for solving multi-objective optimisation problems.  
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Figure 1. The flowchart of dual-particle swarm 
optimisation-modified adaptive bats sonar algorithm 
(D-PSO-MABSA). 

 
 
Here, the dual-level searching process means that 

at every time to obtain a Pareto optimum point, there 
are always two levels of search. During the first level, 
PSO acts as a global search agent of the algorithm with 
its embedded global (exploration) and local 
(exploration) search components. As an explorer, PSO 
is first to determine and mark a potential location of a 
solution in the compound of selected search space. 
The PSO will run according to its standard algorithmic 
procedures such as locating new velocity and position 
to obtain the 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡. 

Then, in the second level search process, the 
optimum solutions found by the PSO are used to 
initialize the starting positions of the population in the 
MABSA. The MABSA considered as a local search 
agent of the developed algorithm also has its global 
search (diversification component) and local search 
(intensification component). Here, MABSA works as 
a follower to find the optimum solutions starting from 
the potential location previously marked by the PSO 
within the designated search space. 

However, there are two factors are considered to 
set PSO as global search agent and MABSA as a local 
search agent. These factors are inspired by the real 
behaviour of both swarm groups. As noted, PSO is 
represented based on a swarm of birds flying in search 
of food while MABSA is based on a colony of bats 
flying for capturing preys. The factors are swarm 
flight attitude and swarm searching strategy. 

The first factor is the flight attitude of the swarm. 
A good global search agent has the capability of 
viewing and monitoring the search space from the 
highest position. The broad perspective from the 
higher ground makes it easier for the agent to mark 
possible areas within the search space containing 
potential solutions that would be a true exploration 
process in swarm intelligence. A local search agent is, 
on the other hand, needed to verify the location of 
potential solutions found by a global search agent. To 
be a good local search agent, the agent must have the 
ability to observe and inspect the solutions from 
stone’s throw view. This exploration process should 
be put after the exploration process so that the 
solutions developed by a global agent could be 
validated properly by the local search agent.  

Looking at the proposed swarm searching strategy, 
there is a distinct line between the searching strategy 
of PSO and MABSA. In the PSO, the algorithm 
utilizes the velocity and positioning of particles to 
evaluate the obtained solution whereas MABSA 
depends on the transmission and positioning of sound 
beams. In the real world, birds can fly with a velocity 
between 20 to 30 mph [6]. With this fast speed, the 
searching process of PSO may miss locations of good 
solutions on their way towards other possible target 
solutions. Moreover, the velocity of particles in PSO 
itself makes the particle or bird to move in a single line 
thus no covering a broad search at one time. The sound 
beams transmitted in MABSA are multi-line able to 
disperse and sweep a large search envelope. Thus, the 
issue of missing good solutions in a smaller area of 
designated search space does not arise. Hence, the 
sequence of the searching process as applied in any 
good swarm intelligence method is followed here 
where coarse searching (diversification) is done first 
by PSO followed by fine searching (intensification) by 
MABSA. In this context, labeling PSO as a global 
search agent and MABSA as a local search agent in 
the proposed hybrid algorithm D-PSO-MABSA is a 
reasonable choice given their characteristics.  

Multi-objective Benchmark Test Functions  
Six well-known multi-objective benchmark test 

functions were used in the investigation of D-PSO-
MABSA’s performance. Each test function consists of 
two objective functions with or without constraints. 
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Binh and Korn 
This function developed in 1994 by [7] to test their 

multi-objective evolutionary strategy (MOBES) for 
multi objective optimisation problem with constraints. 
The function constitutes a constrained problem and 
has a convex Pareto front. The function is defined as: 
 
Minimise 

 
 
and 

 
 
subject to 
  

        

 
 
where 
 

 
 

 

Chakong and Haimes  
This function was adapted from [8]. The function 

as named was developed by Chakong and Haimes in 
1983. The function constitutes a constrained problem 
and has a convex Pareto front. The function is defined 
as: 
 
Minimise 

 
and 

 
 
subject to 
 

 
 

 
where 
 

 
 

Kursawe 
This function is a multimodal function in one 

component and has pair-wise interactions among the 
variables in the other component [9]. The function 
constitutes an unconstrained problem and has a 
discrete convex Pareto front. This function is defined 
as:  
 
Minimise 

 

 
and 

 

 
where 
 

 
 

Osyczka and Kundu 
This function was developed by [11]. The function 

constitutes a constrained problem and has a convex 
Pareto front. The function is defined as:  
 
Minimise 

 

 
and 

 

 

 
subject to 
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Constr-Ex 
This function was used by [12] after developed by 

Deb in 2001 as a multi objective benchmark test 
function. The function constitutes a constrained 
problem and has a convex Pareto front. The function 
is defined as: 

 
Minimise 
 

 
 
and 
 

 

 
subject to 
 

 
 

 
where 
 

 
 

CTP1  
This function was proposed by [13]. The function 

constitutes a constrained problem and has a convex 
Pareto front. The function is defined as: 

 
Minimise 

 
 
and 

 
 
subject to 

 

 

  
where 
 

 
 

Parametric Study of D-PSO-MABSA on 
Selected Multi Objective Benchmark Test 
Functions 

 

Binh and Korn 
The developed D-PSO-MABSA algorithm will 

determine sets of 50 Pareto optimum points for this 
test function by using four different combinations of 
𝛼	and 𝛽 values respectively. The values are: 𝛼 = 0.00; 
𝛽 = 3.50, 𝛼 = 0.00; 𝛽 = 0.00, 𝛼 = 2.50; 𝛽 = 0.00, 
along with the theoretical values; 0 ≤ 𝑟𝑎𝑛𝑑(𝛼, 𝛽) ≤
1. 

  Figure 2 shows the results of Pareto optimum 
points recorded of Binh and Korn function using four 
different settings of 𝛼 and 𝛽 of the developed D-PSO-
MABSA algorithm. As notes, the algorithm was able 
to converge with each setting to a Pareto front of the 
test function that was similar to the results recorded by 
[7]. However, in general, by using theoretical values; 
0 ≤ 𝑟𝑎𝑛𝑑(𝛼, 𝛽) ≤ 1, all the points of Pareto optimum 
set attained are non-dominated vectors. Thus, these 
solutions perfectly formed a recognisable Pareto front. 
The stability of final location of non-dominated 
solutions acquired by D-PSO-MABSA algorithm 
through theoretical 𝛼 and 𝛽 settings show a high 
prospect of D-PSO-MABSA to solve any multi-
objective optimisation problem. 
 

Chakong and Haimes  
For this test function, four sets of 50 Pareto 

optimum points are searched. The developed 
algorithm operated on three different sets of 𝛼 and 𝛽 
values in conjunction with the theoretical values; 0 ≤
𝑟𝑎𝑛𝑑(𝛼, 𝛽) ≤ 1. These three sets considered were: 
𝛼 = 0.00;𝛽 = 3.50, 𝛼 = 0.00; 𝛽 = 0.00, 𝛼 = 2.50; 
𝛽 = 0.00. 

Figure 3 shows the Pareto optimum sets with 
different values of 𝛼 and 𝛽. A Pareto front is properly 
drawn by a set of non-dominated solutions acquired by 
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the theoretical values of 𝛼 and	𝛽; 0 ≤ 𝑟𝑎𝑛𝑑(𝛼, 𝛽) ≤
1. The result comparable to the result acquired by [8]. 
Even the remaining sets of 𝛼 and 𝛽 managed to search 
the points that settle on the Pareto front, but there were 
still, few dominated solutions scattered far from the 
true front. Thus, it is shown that the developed D-
PSO-MABSA algorithm with the theoretical 
parameter values was able to achieve a perfect Pareto 
front with this test function from the set of Pareto 
optimum points attained. This performance makes the 
developed algorithm at par with other multi-objective 
optimisation algorithms and may be used widely to 
solve any multi-objective optimisation problems.  
 

Kursawe 

For test function involved searching of four sets of 
200 Pareto optimum solutions with the developed D-
PSO-MABSA algorithm. The theoretical values of 𝛼 
and 𝛽; 0 ≤ 𝑟𝑎𝑛𝑑	(𝛼, 𝛽) ≤ 1 were adopted along with 
another three sets of 𝛼 and 𝛽 for performance 
comparison purposes. The three sets used were: 𝛼 =
2.00; 𝛽 = 4.00, 𝛼 = 3.00; 𝛽 = 2.00, 𝛼 = −2.00; 
𝛽 = −2.00. 

Figure 4 shows the Pareto optimum sets obtained 
for Kursawe function using D-PSO-MABSA 
approach. As noted, the developed algorithm with 
theoretical values of 𝛼 and 𝛽 achieved the best 
performance compared to when the other three sets of 
𝛼 and 𝛽 used. Most of the points in the Pareto 
optimum set were non-dominated solutions, 
successfully exhibiting a Pareto front of the test 
function. The pattern of Pareto fronts with the three 
discontinuous regions also developed nearly matched 
the result obtained by [10].  

With the remaining three sets of 𝛼 and 𝛽 the 
algorithm could not form a Pareto front of this test 
function, and only a few of the solutions were non-
dominated. The Pareto optimum point generated from 
the set 𝛼 = 3.00; 𝛽 = 2.00 is likely to work, but most 
of the points with this set are dominated solutions and 
scattered far from the true front. As far as the values 
of 𝛼 and 𝛽 are concerned, negative values do not lead 
to a Pareto front. When set of 𝛼 = −2.00 and 𝛽 =
−2.00 was applied, no non-dominated solutions were 
achieved. Nonetheless, the D-PSO-MABSA 
algorithm with the right setting of its parameters 
would be good alternative multi objective algorithm 

for solving discrete convex Pareto front-type multi-
objective optimisation problems. 
 

Osyczka and Kundu 
For this test function, four sets of 500 Pareto 

optimum points are searched the developed D-PSO-
MABSA algorithm. Each set is examined by different 
value of 𝛼 and 𝛽. The theoretical values 0 ≤
𝑟𝑎𝑛𝑑	(𝛼, 𝛽) ≤ 1 were applied along with the three 
sets 𝛼 = 3.10; 𝛽 = 1.50, 𝛼 = −1.70; 𝛽 = 5.00, 𝛼 =
2.80; 𝛽 = −0.50. 

Figure 5 shows the effect of different values of 𝛼 
and 𝛽 on the Pareto optimum solutions of Osyczka and 
Kundu function. When the theoretical values of 𝛼 and 
𝛽; 0 ≤ 𝑟𝑎𝑛𝑑(𝛼, 𝛽) ≤ 1 were used, all the Pareto 
optimum points were non-dominated vectors. 
Although the ranges for 𝐹!and 𝐹" recorded were wider 
than the result reported by [11], the shapes of the 
Pareto front were nearly similar as all the Pareto front 
were nearly similar as all the Pareto optimum points 
contributed to form that front. In the meantime, the 
three sets of 𝛼 and 𝛽 produced many dominated 
vectors of Pareto optimum sets thus unable to form a 
viable Pareto front. Indeed, the Pareto optimum set 
gathered by 𝛼 = 2.80; 𝛽 = −0.50 was more obvious 
as the points were scattered outlying from the true 
front. However, if the theoretical values of 𝛼 and 𝛽 are 
retained by the D-PSO-MABSA, the algorithm will be 
able to perform well in comparison to available 
algorithms in solving multi-objective problems. 
 

Constr-Ex 
The developed algorithm was evaluated with this 

function by searching four sets of 50 Pareto optimum 
solutions. Here, four sets of different values of 𝛼 and 
𝛽 were used. These included the theoretical 
values	0 ≤ 𝑟𝑎𝑛𝑑(𝛼, 𝛽) ≤ 1, 𝛼 = −4.00; 𝛽 = 3.00, 
𝛼 = 0.00; 𝛽 = −1.70, 𝛼 = 3.50; 𝛽 = 3.50. 

As noted in Figure 6, all four sets of 50 Pareto 
optimum solutions generated from four different 
values 𝛼 and 𝛽 of D-PSO-MABSA were non-
dominated vectors. So, the entire sets produced a 
Pareto front similar to that reported by [12]. It was 
noted that the convex shape of Pareto front produced 
by the D-PSO-MABSA algorithm was smoother than 
that reported by [10]. It is clear that the developed D-
PSO-MABSA algorithm generates distinctly better 
Pareto optimum points in solving multi-objective 
optimisation problems. 
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Figure 2. Pareto optimum solutions for Binh and Korn function with different values of α and β. 

 

 
 

Figure 3. Pareto optimum solutions for Chakong and Haimes function with different values of α and β. 
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Figure 4. Pareto optimum solutions for Kursawe function with different values of α and β. 

 

 
 

Figure 5. Pareto optimum solutions for Osyczka and Kundu function with different values of α and β. 
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Figure 6. Pareto optimum solutions for Constr-Ex function with different values of α and β. 

 

 
Figure 7. Pareto optimum solutions for CTP1 function with different values of α and β. 
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CTP1  
Here, four sets of 50 Pareto optimum solutions are 

searched for CTP1 function using the developed D-
PSO-MABSA algorithm. These were the theoretical 
values 0 ≤ 𝑟𝑎𝑛𝑑(𝛼, 𝛽) ≤ 1, 𝛼 = 0.50; 𝛽 = 4.00, 
𝛼 = −2.00; 𝛽 = 0.75, 𝛼 = 5.00; 𝛽 = 1.00. 

The results of the Pareto optimum solution for the 
CTP1 are shown in Figure 7. It is noted that all the 
solutions generated using D-PSO-MABSA algorithm 
with four different sets of 𝛼 and 𝛽 values were non-
dominated vectors. The Pareto fronts formed from the 
solutions were identical to the result reported by [13]. 
Furthermore, these also reflected the real advantage 
when using the set of theoretical value; 0 ≤
𝑟𝑎𝑛𝑑(𝛼, 𝛽) ≤ 1, as the non-dominated solutions 
produced were uniformly distributed along the front. 
Hence, the outcomes resulted from a good leverage of 
minimising both 𝐹! and 𝐹" and no one was extremely 
good while other suffered. The performances shown 
with the test functions demonstrate the strong ability 
of the developed algorithm in producing good trade-
off solutions for multi-objective optimisation 
problems. 

Conclusions 
This paper has introduced a hybridization of 

particle swarm optimisation with a modified adaptive 
bats sonar algorithm to solve multi-objective 
optimisation problems. The multi-objective 
optimisation problems have been briefly defined with 
the weighted sum method as an approach to solve the 
problem. A dual-level searching for multi-objective 
optimisation problem using PSO and MABSA has 
been proposed. The proposed approached includes 
two factors to justify the significance of this 
hybridisation strategy which are swarm flight attitude 
and swarm searching strategy. 

The parametric study of the proposed algorithm on 
several multi-objective benchmark test functions has 
been done to show the ability of the developed 
algorithm to solve the multi objective optimisation 
problems. The computer simulation results have 
showed the ability of the D-PSO-MABSA algorithm 
to solve a variety of multi-objective benchmark test 
functions. The application of the proposed algorithm 
to solve practical multi-objective optimisation 
problem in other field instead of engineering 
background will be considered in future works. 
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