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ABSTRACT -Simultaneous model order and parameter estimation (SMOPE) is a metaheuristic based
system identification method. SMOPE was introduced using particle swarm optimization (PSO). There
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are several iteration strategies for PSO. The original work on SMOPE is based on synchronous PSO

(S-PSO). However, in some works PSO using other iteration strategy is found to give better results. In KEYWORDS
this work, based on six system identification problems random asynchronous (RA-PSO) based SMOPE SMOPE
is found to have slight advantage over S-PSO. PSO
Random

Asynchronous

Introduction

Simultaneoud model order and parameter
estimation (SMOPE) was proposed for solving
autoregressive exogenous system identification
problem effectively using metaheuristics algorithms
[1-2]. The method enabled a system’s order and
parameters values to be searched simultaneously. This
is possible through the way the problem is encoded in
the search agents. Even though SMOPE was
introduced based on particle swarm optimization
(PSO) [1-2], it can easily be adapted to suit other
metaheuristic algorithm such as, gravitational search
algorithm (GSA) [3-4].

The PSO is a population-based optimization
algorithm. The search agents of PSO, known as
particles mimics how living organism such as birds
and fishes look for food by exploring the search area
using their own experience and information from
neighborhood as guidance. The search in PSO is done
iteratively. PSQ’s iteration strategy can be classified
as synchronous (S-PSO) and asynchronous (APSO)
update [5]. S-PSO is more popular approach than A-
PSO, where in S-PSO the movement of the whole
particles in the swarm is done at once, after their
performanceis evaluated. In A-PSO a particle moves
as soon as its own performance is evaluated, without
the need to wait for others to complete their
evaluation. The direction of the movement in A-PSO
is made based on whatever information available. This
is a more accurate replication of nature.

Random asynchronous PSO (RA-PSO) was
introduced in [6]. In the original APSO the particles

are evaluated and move according to the particle
number. However, in RA-PSO the particle to be
evaluated and move is chosen randomly, hence, in an
iteration a particle can move more than once or none
at all. It is found that RA-PSO is better than A-PSO.

In this work the implementation of SMOPE using
RA-PSO is studied and compared with SMOPE based
on S-PSO. In several works, implementation of PSO
with a particular iteration strategy is found to give a
better result compare to other strategy. For example,
Wu and Gao had reported that their adaptive inertia
weight PSO implemented using asynchronous update
has a better performance than the same approach
implemented using synchronous update [7]. In [8], A-
PSO with discrete crossover is found to perform better
than S-PSO with the crossover operator.

However, Engelbrecht in his work concluded that
there is no definite winner of S-PSO vs A-PSO but
rather it is a function dependent option [5]. The same
observation is made in [9].

Therefore, in this work the performance of RA-
PSO based SMOPE is compared with the S-PSO based
SMOPE. Six ARX system identification problems are
used. The results show that RA-PSO on average has a
slightly better performance.

Autoregressive Exogenous Model (ARX)

System identification is a task of finding an
accurate mathematical model of a control system
based on the available input and output data [10]. In
[11], the ARX model was introduced by Ljung among
many other models for system identification.
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Figure 1. The ARX structure.

The ARX structure is presented in Figure 1. In the
figure, u(f) and y(¢) represent input and output of the
model. The term &(¢) represents white noise that enters
the system as direct error. The mathematical model for
ARX is:

YO +ay(t — 1) + agy(t — 2) + = + ap y(t —mg) =
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Each of the agents in SMOPE represents system
order and parameters values. Assuming maximum
system order under consideration is D, the agents
dimension should be 2D+1. The first dimension of
each agent’s represents the system order; n, while
dimension 2 to D+1 represents the possible values of
poles parameters, ay, @y, ..., Ay, and dimension D + 2
to 2D + 1 are reserved for the zeros parameters,
by, b, ..., by, . Both m, and m;, can be lesser than D.
If m, <D, then only the values in dimension 2 to m,+
1 are used, while the values in dimension m, + 2 to D
+ 1 are ignored. Similarly, if m,< D, then only the
values in dimension D + 2 to D + my+ 1 are used,
while the values in dimension D + my+ 2 to 2D + 1
are ignored. In this work the maximum order
considered is 9 with m, < my,.

biu(t — 1) + byu(t — 2) + -+ + by, y(t —my,) + () (1)
where
A={ay,az, ..., am,} ) Particle Swarm Optimization
B=1b b b 3 Particle swarm optimization (PSO) is a population
= {b1, bz, ., by, } G) based algorithm which has gain popularity due to its

are the tunable parameters. Applying z-transform the
transfer function can be written as:

Y(z) _ bz l4byz i+ 4bpz™
U(z) 1+a1z714+a,z72++apz "

G(z) = “4)

The system identification problem is optimized
when the best values of the tunable parameters, which
are the poles and zeros parameters are found.

SMOPE

In contrast to other system identification
approaches, SMOPE find the optimal system order
and the parameters values simultaneously. In [1],
standard PSO was chosen to search for optimal system
order and parameters values.

The key of SMOPE is the encoding of the search
agents. Therefore, by adopting similar encoding,
SMOPE can easily be applied to other optimization
algorithms such as GSA [3-4]. The agent’s encoding
used in SMOPE is shown in Table 1.
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simplicity and low computational cost. It has been
successfully adapt in various fields, such as robotics
[12], power distribution planning [13], and financial
planning [14].

Each of the particles in PSO acts as the search
agents. The particles has velocity, and position, . The
search for optimal solution is conducted in PSO by
iteratively  evaluating and updating particles
performance, velocity and position. The velocity and
position are updated according to equation (5) and (6),
accordingly. The particles’ search direction is
influenced by the previous search, their own best
performance, pBest;, and neighbourhood best, gBest.
The performance of the particles’ can be measured
using equation (7). In the equation, ¥ (estimation) 1S the
output signal based on the mathematical model found
by a particle, whereas y is the actual data and J is its
mean value.

In this paper, SMOPE is implemented using PSO
of two different update strategies, synchronous PSO
(S§-PSO) and random asynchronous PSO (RA-PSO).
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vi(t) = wvi(t—1) + clrl(pBesti —x;(t — 1)) + co1y (gBest —x;(t — 1)) (5)

x () =vi(t -1 +x(t-1)

best fit = 100 [1 = St o

Synchronous update is the more famous iteration
strategy for PSO. In S-PSO, the whole population is
updated first before their velocities and positions are
updated. Hence, the particles have overview of the
whole swarm’s performance before the next move is
made. The pseudocode for S-PSO is shown in Figure
2. There are two loops per iteration for S-PSO. In the
first loop the performance of the whole population is
evaluated, whereas the particles velocities and
positions are updated in the second loop.

Random asynchronous update is a new iteration
strategy for PSO [5]. In RA-PSO, a particle is chosen
randomly to be evaluated. Immediately after this
particle is evaluated, its velocity and position are
updated using the available information. There is no
restriction on repetition, hence a particle can be chosen
more than once or none at all in an iteration. The
chosen particles in RA-PSO are updated based on
various neighbourhood information. The pseudocode
for RA-PSO is shown in Figure 3. There is only one
loop per iteration in RA-PSO. In the loop, first a
particle to be evaluated is randomly chosen, then its
performance is evaluated, followed by its velocity and
position update.

Experiments

Six system identification problems found in
database for the identification of system (DalSy) were
used. Four of the systems chosen are mechanical
systems, which are ball-beam, hair-dryer, wing flutter
and robot arm. The data for ball-beam, hairdryer and
robot arm systems are obtained from laboratory works
while the wing flutter data is obtained from industry.
A thermic system namely SISO heating system is also
chosen for the experiment. The heating system’s
output is measured using thermocouple taken from the
back of a steel plate. The last experiment is using data
from process industry, which is a liquid-saturated
steam heat exchanger system.

The first half of the data from each of the systems,
is used for training purposed, which is to select the best
order and parameters values using SMOPE, while the
other half is used for testing.

For example, as shown in Figure 4. The first half of
the data for the hair dryer system (in the box) is used
for training while the remaining is used to test the
quality of the solution found by SMOPE.
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Table 1. Agent’s encoding.

Dimension Variable in ARX
1 Order, n

2 ai

3 az

D+1 ap

D+2 bi

D+3 by

2D+1 bp

1. Random intialization of swarm

2.do

3. for all particles

4. evaluate performance

5. update pBest and gBest

6. end

7. for all particles

8. update velocity

9. update position

10. end

11.while stopping condition is not achieved

Figure 2. S-PSO’s pseudocode.

12.Random intialization of swarm

13.do

14. for number of particles

15. randomly choose a particle
16. evaluate performance

17. update pBest and gBest

18. update velocity

19. update position

20. end

21.while stopping condition is not achieved

Figure 3. RA-PSO’s pseudocode.

The SMOPE method is implemented using both S-
PSO and RA-PSO here. The algorithms are using
population of 100 particles which are randomly
initialized. The algorithms are repeated until either
100% training fitness is achieved or the iteration count
exceeds 2000. Each of the experiment is repeated 50
times and the results found are averaged.

Results and Discussions

The results obtained from the experiment are
tabulated in Figure 5 and Figure 6 shows the average
training fitness in every iteration for each system.
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Figure 4. Input and output data of the hair dryer system.
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Figure 5. Performance of S-PSO based SMOPE vs RA-PSO based SMOPE.

On average RA-PSO has a slight advantage over
the original implementation which is based on S-PSO.
Out of the six systems used, RA-PSO performs better
in four systems, which are the heating system,
exchanger system, hair dryer system and wing flutter
system. RA-PSO has a better performance for these
systems in training phase as well as in the testing stage.
However, the differences between the two algorithms
are marginal.

The marginal difference can be seen in Figure 5. It
can be seen that in all iteration the fitness of S-PSO
based SMOPE and RA-PSO based SMOPE is close to
each other. The mathematical models for each system
found by both algorithms are presented in Figure 7.

Both algorithms found their own model with their own
parameters values and system order.

Conclusion

SMOPE is a metaheuristic based system
identification method. The method is able to determine
the system order and the parameters simultaneously.
This work investigates the difference between S-PSO
based and RA-PSO based SMOPE. The
implementation of SMOPE using RA-PSO is found to
have a slight advantage over its implementation using
S-PSO.
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Figure 6. Convergence curves.
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Figure 7. Mathematical models.
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