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Introduction 
The simulated Kalman filter (SKF) has been 

introduced in 2015 for numerical optimization 
problems [1-3]. It was introduced as population-based 
metaheuristics, where the search for optimal solution 
is conducted by a group of agents. The agents of SKF 
work like Kalman filters [4] and the measurement in 
SKF is a simulated measurement which is obtained 
using mathematical equation. 

Many studies on SKF can be found in literature. 
For example, the SKF has been studied fundamentally 
[5-6]. The SKF also has been extended for binary 
optimization problems [7] and combinatorial 
optimization problems [8-10]. Hybridization of SKF 
with particle swarm optimization (PSO), gravitational 
search algorithm (GSA), and opposition-based 
learning [11-17] have also been proposed for better 
performance. Other variants called parameter-less 
SKF and randomized SKF algorithms were proposed 
in [18-19]. The SKF has also been applied for real 
world problems like the adaptive beamforming in 
wireless cellular communication [20-23], airport gate 
allocation problem [24-25], feature selection of EEG 
signal [26-27], system identification [28-29], image 
processing [30-31], controller tuning [32], and PCB 
drill path optimization [33]. 

A study in 2018 proved that the SKF algorithm able 
to operate using only one agent. This variant of SKF 
is called single-solution simulated Kalman filter 
(ssSKF) [34]. The ssSKF offers a slight advantage 
over the SKF counterpart in terms of the number of 
parameters in the algorithm. At present, the ssSKF has 
been applied in solving routing problem in printed 
circuit board drilling process [35]. 

This paper presents the first tutorial on ssSKF 
which emphasizes on the calculation aspect of ssSKF. 
This paper consist of two parts. The first part explains 
the fundamentals of the ssSKF while the second part 
shows a numerical example based on a function 
minimization problem. 

The Single-solution Simulated Kalman Filter 
The single-solution Simulated Kalman Filter 

(ssSKF) algorithm is a single agent version of the 
population-based Simulated Kalman Filter algorithm. 
Similar to SKF, the ssSKF algorithm attempts to solve 
optimization problems by iteratively estimating the 
optimum solution using the scalar  model  of  discrete 
Kalman filter framework. By using this model, the 
state vector, 𝑿, holds the agent’s estimated position, 
which is a scalar value for each dimension in the 
search space. This estimated state variable is used in 
the calculation of fitness based on the specific 
objective function. 

ABSTRACT – Simulated Kalman Filter (SKF) is an estimation-based optimization algorithm which is 
established based on the Kalman filtering framework. A variant of SKF which operates using one agent 
is called single-solution simulated Kalman filter (ssSKF). At present, there is no tutorial been published 
on ssSKF. One may find that the equations and flowchart of the algorithm is not easy to understand. 
Hence, this paper provides a tutorial on ssSKF algorithm that emphasizes on a numerical example for 
easy and intuitive explanations. This tutorial would be important to those who work on the fundamentals 
and applications of ssSKF as well as to students who are new to optimization research. 
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Figure 1. Principle of the ssSKF algorithm. 

 
 
In ssSKF, the algorithm starts with the 

initialization of the single agent. This agent represents 
a Kalman Filter. Next, the fitness of the agent is 
evaluated. During each iteration, the best-so-far 
solution, 𝑿!"#$, which holds the best-found solution so 
far, is updated. The single agent in ssSKF algorithm 
iteratively improves its estimation by using the 
standard Kalman Filter framework which comprises of 
predict, measure, and estimate phases. An adaptive 
neighbourhood is employed to make a prediction 
during the prediction phase. The measurement, guided 
by the best-so-far solution, 𝑿!"#$, is simulated during 
the measurement phase. Finally, the agent makes an 
estimation of the optimum solution during the 
estimation phase, with the influence of the Kalman 
gain, 𝐾. This process continues until the stopping 
condition is met.  

Figure 1 illustrates the basic principle of the ssSKF 
algorithm. This figure shows that principally, the 
ssSKF algorithm uses only a single agent which acts 
as a Kalman filter. The estimation by the agent is 
involved in the calculation of fitness by the objective 
function, after which the best-so-far solution, 𝑿!"#$, is 
determined and updated. This best-so-far solution, 
𝑿!"#$, guides the simulated measurement process that 
provides a measurement to the Kalman filter to make 
an estimation for the next time step. 

The flowchart of ssSKF algorithm is shown in 
Figure 2. The algorithm begins with random initial 
solution, X(0). Initial error covariance, P(0), is set to a 
normally distributed random number. Then, fitness is 
calculated. After that, according to the type of 
problem, the best-so-far solution, 𝑿!"#$, is updated. 
The 𝑿!"#$ is updated only if the solution at current 
iteration, X(t), is better. For minimization problem, 
𝑿!"#$ is updated if the fitness of X(t) is less than the 
fitness of 𝑿!"#$. On the other hand, for maximization 
problem, 𝑿!"#$ is updated if the fitness of X(t) is 
greater than the fitness of 𝑿!"#$. 

During prediction, the following equations are used 
to predict the optimum solution: 

𝑿%(𝑡|𝑡 + 1)~𝑈+𝑿!"#&% − 𝛿,𝑿!"#&% + 𝛿/                   (1) 
	

𝑃%(𝑡|𝑡 + 1) = 𝑃%(𝑡) + 𝑟𝑎𝑛𝑑𝑛%                             (2) 
 

where randnd is a normally distributed random 
number and is used whenever the parameter value is 
needed for each dimension in every iteration. The 
ssSKF makes a prediction that resides in a confined 
neighborhood of [𝑿!"#&% − 𝛿, 𝑿!"#&% + 𝛿] in every 
dimension, with the 𝑿!"#$ to be the center of the 
neighborhood. The size of the local neighbourhood is 
determined by the adaptively decreasing step-size δ. 
 

𝛿& = 𝑒'
!×#
#$%& × 𝛿(                                                     (3) 

 
where tMax is the maximum number of iterations. The 
initial neighbourhood limit,	𝛿(, is determined using 𝛿( 
= max(|lowerlimit|, |upperlimit|) to ensure maximum 
coverage of the search space during the first iteration. 

Note that the ssSKF algorithm uses an adaptive 
neighbourhood in making prediction. The idea of 
having a prediction step is to make the best guess on 
the location of the optimal solution. This element is 
missing in the original SKF algorithm. In view of 
having 𝑿!"#$ as the best-so-far solution, it is wise to 
predict that the position of the optimum solution is 
somewhere near 𝑿!"#$. Therefore, in ssSKF, a 
decreasing local neighbourhood is adopted during the 
prediction step to further exploit this information.  

To illustrate the concept of local neighbourhood in 
ssSKF algorithm, a two-dimensional problem of 
sphere function bounded by [-2,2] in both dimensions 
is used. The function is shown in (4). 

 
f(𝑿) = ∑ 𝑥)**

)+, = 𝑥,* + 𝑥**                                     (4) 
 
Figure 3 shows that the position of the optimum 

solution at 𝑡 = 1 is predicted (marked in green) to be 
located in a confined neighborhood of [𝑋!"#&% − 𝛿& ,
𝑋!"#&% + 𝛿&] which is marked by the black line, with the 
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Figure 2. Flowchart of the ssSKF algorithm. 

 
best-so-far solution, 𝑿!"#$, at the center of the 
neighborhood. This local neighborhood, NS, is 
decreasing in size, determined by the step-size, 𝛿$, as 
the iteration increases following (3). Figure 4 shows 
that the prediction of the optimum at iteration 𝑡 = 10 
happens in a smaller local neighbourhood. The size of 
local neighbourhood reflects that certainty in the 
prediction. As iteration increases, the fitness of the 
best-so-far solution is also improved. A smaller local 
neighbourhood during prediction indicates that it is 
almost certain that the optimum solution is located 
very near to the best-so-far solution, 𝑿!"#$.  

This certainty in prediction (reflected by the size of 
the local neighbourhood), however, cannot happen too 
early or it might lead to premature convergence. 

Figure 6 shows the plot of step-size, 𝛿&, for different 
values of the adaptive coefficient, 𝛼, over 100  
iterations. It can be observed that a small value of 𝛼 
will lead to an almost linear decrement, while a larger 
value of 𝛼 will lead to a faster convergence.  

It is worth to note here that the decrement of the 
step size, 𝛿&, is also dependent on the maximum 
number of iterations. Since there is only one agent in 
ssSKF algorithm and there is only one function 
evaluation per agent per iteration, the step size, 𝛿&, can 
be said dependent on the maximum number of 
function evaluations. Simpler problems might not 
need a high number of function evaluations to reach 
ideal solution as compared to complex problems.  
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Figure 3. Local neighborhood during prediction (𝑡 = 1). 

  

Also, the landscape of the problem also might 
influence the optimal value of the adaptive coefficient, 
𝛼. For example, solving a unimodal problem might 
benefits from a high value of adaptive coefficient, but 
for solving a multimodal problem, a high value of 
adaptive coefficient might cause the optimization 
process to converge prematurely. The choice of this 
adaptive coefficient, 𝛼, is problem dependent. Thus, 
tuning is required to achieve the best solution. 

The next step is measurement calculated at every 
dimension. In this step, the best-so-far solution, 𝐗!"#&% , 
steered the agent’s simulated measurement value, 
Zd(t), as follows: 

 
𝒁%(𝑡) 	= 	𝑿%(𝑡|𝑡 + 1) 	+	∆                                 (5) 

 
where 
 
∆	= 	𝑠𝑖𝑛(𝑟𝑎𝑛𝑑% × 2𝜋)	×	 H𝑿%(𝑡|𝑡 + 1)−𝑿!"#&% H   (6) 

 
 The purpose of the measurement is to give feedback 
to the estimation process. The measurement is 
simulated in such a way that the measured value of the 
agent may take any random value surrounding the 
predicted value, 𝐗%(𝑡|𝑡 + 1), either approaching to or 
moving away from the best-so-far solution, 𝐗!"#&% , 

balancing between exploration and exploitation. The 
exploration and exploitation mechanisms are further 
compromised as the distance between the predicted 
value and the best-so-far solution decreases with the 
increase of the number of iterations. 

Finally, during the estimation step, the solution and 
error covariance estimates for the next iteration are 
calculated using the estimate equations right after the 
calculation of the Kalman gain. 

 	
𝐾%(𝑡) = -'.𝑡/𝑡 + 10

-'.𝑡/𝑡 + 101234%'                                      (7) 

 	
𝐗%(𝑡 + 1) = 𝐗%(𝑡|𝑡 + 1) + 𝛾                                 (8) 

 
𝛾 = 𝐾%(𝑡) ×	(𝐙%(𝑡) − 𝐗%(𝑡|𝑡 + 1))                      (9) 
 

 𝑃%(𝑡 + 1) = (1 − 𝐾%(𝑡))×𝑃%(𝑡|𝑡 + 1)              (10) 
 

At the end of the estimation step, a better solution 
for the next iteration that lies between the predicted 
and the measured value may be produced. This 
process continues until the maximum number of 
iterations. 
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Figure 4. Local neighborhood (decreased in size) during prediction (𝒕 = 𝟏𝟎). 

 

Numerical Example  
In order to understand how the single-solution 

simulated Kalman filter (ssSKF) algorithm operates, 
consider a two-dimensional problem of sphere 
function bounded by [-2,2] in both dimensions. The 
function is similar to (4). 

Figure 5 shows the three-dimensional view of the 
sphere function. The ideal solution for the given 
objective function is at the centre of the search space 
(0,0), where the fitness value is equal to 0 
(minimization problem). 

The agent of ssSKF is represented by a state vector 
of two dimensions, 𝑿(𝑡) = {𝑥,(𝑡), 𝑥*(𝑡)}. For 
minimization problem, the fitness of the solution is 
first set to infinity, 𝑓𝑖𝑡(𝑿&25") = ∞. 

The first step is initialization. At 𝑡 = 0, the initial 
estimated state of the agent, 𝑿(0), is distributed 
randomly in uniform distribution within the search 
space of [-2,2] in every dimension. A normally 
distributed random number, 𝑟𝑎𝑛𝑑𝑛6%, defined in the 
range of (0,1) with a mean of 0.5, is specified in every 
dimension for the initial error covariance of each 
agent, 𝑷(0). 

 
𝑿(𝟎) = {0.9271,−0.2500} 

𝑷(𝟎) = {0.5341, 0.5771}		
 
Figure 6 illustrates the position of the estimated 

state of the SKF agents during initialization at 𝑡 = 0, 

on the contour plot of the sphere function’s search 
space. The position of the ideal solution is marked by 
‘*’, while the position of agents is represented by 
square boxes. 

In the second step, the fitness the agent is 
evaluated:  

 
𝑓(𝑿(0)) = 0.9271* + (−0.25)* = 0.9220 

 
Then, based on the fitness values, the best-so-far 

solution, 𝑿!"#& is updated. In this specified iteration, it 
is found that the agent has better fitness value 
(0.9220 < ∞), thus, the best value is updated. 

 
𝑿!"#& = {0.9271,−0.2500} 
 

Figure 7 shows the 𝑿!"#& update after the fitness 
evaluation step. 

The third step start with prediction phase. This is 
calculated using (3). In ssSKF, optimum solution is 
predicted to be located in the local neighbourhood, 𝑁#, 
surrounding the best-so-far solution, 𝑋!"#&% . 

To do the prediction, first, we need to calculate the 
step size, d. Let the adaptive coefficient, a equals to 
10, and the maximum iteration to be 10. The initial 
step size depends on the size of the search space, 𝛿( =
max(|−2|, |2|) = 2. Thus, the step size, d, and the 
corresponding predicted state estimate for the first 
iteration is: 
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Figure 5. Three-dimensional view of sphere function.

 

 
Figure 6. Estimated position by the ssSKF agent in the search space (initialization). 
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Figure 7. Best-so-far solution (𝑿𝒃𝒆𝒔𝒕) update. 

 
 

 

𝛿, = e'
,(×,
,(( × 2 = 1.8097 

 
𝑋%(0|1)~𝑈+𝑋!"#&% − 𝛿,, 𝑋!"#&% + 𝛿,/

= {−0.0639,−0.6676} 
 

Figure 8 shows the predicted position of the 
optimal solution by the ssSKF agent is located inside 
the local neighbourhood. 

The error covariance is predicted to be influenced 
by the process noise. A normally distributed random 
number, 𝑟𝑎𝑛𝑑𝑛6%, defined in the range of (0,1) with a 
mean of 0.5, is specified in every dimension as the 
process noise of each agent, 𝑸(0). Let the process 
noise for each agent, 𝑸(0), be: 

 
𝑸(0) = {0.4467, 0.5542} 
 
𝑷(0|1) = 𝑷(0) + 𝑸(0) 
									= {0.5341 + 0.4467, 0.5771 + 0.5542}  
        = {0.9808, 1.1313}	 
 

The prediction phase is followed by the simulated 
measurement phase. The random number, 𝑟𝑎𝑛𝑑%, 
used in measurement based on (5) are taken from a 
uniform distribution in the range of (0,1). Let the 
random number, 𝑟𝑎𝑛𝑑 be: 
 
𝒓𝒂𝒏𝒅 = {0.2240, 0.1014}	

𝑍,(0) = 𝑋,(0|1) +	

𝑠𝑖𝑛(𝑟𝑎𝑛𝑑, × 2𝜋) × H𝑋,(0|1) − 𝑋!"#&, H	

= −0.0639 +	
𝑠𝑖𝑛(0.2240 × 2𝜋) × |−0.0639 − 0.9271|	
= 0.9139	

𝑍*(0) = 𝑋*(0|1) +	

𝑠𝑖𝑛(𝑟𝑎𝑛𝑑* × 2𝜋) × H𝑋*(0|1) − 𝑋!"#&* H	

= −0.6676 +	
𝑠𝑖𝑛(0.1014 × 2𝜋) × |−0.6676 − (−0.2500)|	

= −0.4192	
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Figure 8. Predicted position by the ssSKF agent in the search space during prediction phase.

Figure 9 shows the simulated measurement value 
for each agent and their corresponding range. The 
effect of the sine function is to provide a balance 
between exploration and exploitation during the 
simulated measurement process while allowing more 
possibility at the extreme values. A simulated 
measurement may take any value bounded by the 
distance between the predicted state estimate to the 
best-so-far solution, 𝑿!"#& in both dimensions. The 
farther predicted value from 𝑿!"#&, the bigger the 
range. This allows more exploration of the search 
space by the agent. 

Lastly, estimation for the next time step is carried 
out by calculations based on (7) to (10). The 
estimation phase is preceded by calculation of Kalman 
gain. A normally distributed random number, 
𝑟𝑎𝑛𝑑𝑛%, defined in the range of (0,1) with a mean of 
0.5, is specified in every dimension as the 
measurement noise of the agent, 𝑹(0). Let the 
measurement noise for the agent, 𝑹(0), be: 

 

𝑹(𝟎) = {0.6242, 0.4868}	

𝐾,(0) =
𝑃,(0|1)

h𝑃,(0|1) + 𝑅,(0)j
=

0.9808
0.9808 + 0.6242

	

													= 0.6111	

𝑋,(1) = 𝑋,(0|1) + 𝐾,(0) 	× h𝑍,(0) − 𝑋,(0|1)j	

													= −0.0639 +	

																		0.6111	 × h0.9139 − (−0.0639)j	

													= 0.5336	

𝑃,,(1) = h1 − 𝐾,(0)j × 𝑃,(0|1)	

													= (1 − 0.6111) × 0.9808	
													= 0.3814	

𝐾*(0) =
𝑃*(0|1)

h𝑃*(0|1) + 𝑅*(0)j
	

													=
1.1313

1.1313 + 0.4868
	

													= 0.6992	

𝑋*(1) = 𝑋*(0|1) + 𝐾*(0) 	× h𝑍*(0) − 𝑋*(0|1)j	

													= −0.6676 +	

																		0.6992	 × h	−0.4192 − (−0.6676)j	

													= −0.4939	

𝑃*(1) = h1 − 𝐾*(0)j × 𝑃*(0|1)	

													= (1 − 0.6992) × 0.6992 = 0.3403	
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Figure 9. Simulated measurement value by the ssSKF agent during the measurement phase. 

 
 
 

 
 

Figure 10 shows the estimation position of the 
optimum solution by the ssSKF agent during the 
estimation phase. Figure 11 on the other hand, shows 
the estimated position of the optimal solution at 𝑡 = 0 
and at 𝑡 = 15. It can be seen that the estimation by the 
ssSKF agent has improved during the search. Finally, 
these steps will be repeated until the stopping 
condition is met.  

Table 1 gives a summary of the agent’ predict, 
measure and estimate values from 𝑡 = 1 to 𝑡 = 15 
with their corresponding estimation fitness value and 
best-so-far solution. 

Conclusions 
The ssSKF algorithm is based on Kalman filtering 

computation in finding the global minimum/maximum 
for numerical optimization problems. This set of 
computation is different compared to other well-
established optimization algorithms. Students and 
those who have no experience working on Kalman 
filtering might have difficulties in the implementation 
of SKF in MATLAB or other comparable software to 
solve an optimization problem. This tutorial is fruitful 
for them to understand the calculation involved in 
ssSKF.  

Acknowledgement 
This research is supported by the Fundamental 
Research Grant Scheme awarded by the Ministry of 
Higher Education Malaysia to Universiti Malaysia 
Pahang (FRGS/1/2018/TK04/UMP/02/9). 

References 
[1] Ibrahim, Z.,  Abdul Aziz, N.H., Ab. Aziz, N.A., Razali, R., 

and Mohamad, M.S. (2016). Simulated Kalman filter: a 
novel estimation-based metaheuristic optimization 
algorithm. Advanced Science Letters, vol. 22, pp. 2941-
2946. 

[2] Abd Aziz, N.H., Ibrahim, Z., Razali, S., and Ab. Aziz, N.A. 
(2016) Estimation-based metaheuristics: a new branch of 
computational intelligence. The National Conference for 
Postgraduate Research, pp. 469-476. 

[3] Ibrahim, Z., Abdul Aziz, N.H., Ab Aziz, N.A., Razali, S., 
Shapiai, M.I., Nawawi, S.W., and Mohamad, M.S. (2015) A 
Kalman filter approach for solving unimodal optimization 
problems. ICIC Express Letters, vol. 9, pp. 3415-3422. 

[4] Kalman, R.E. (1960) A new approach to linear filtering and 
prediction problems. ASME Journal of Basic Engineering, 
vol. 82, pp. 35-45.  

[5] Abd Aziz, N.H., Ibrahim, Z., Razali, S., Bakare, T.A., and 
Ab. Aziz, N.A. (2016). How important the error covariance 
in simulated Kalman filter?. The National Conference for 
Postgraduate Research, pp. 315-320. 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Dimension 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

D
im

en
si

on
 2

Measurement phase

Ideal solution
Best-so-far solution
Prediction by agent
Measurement by agent



mekatronika – Journal of Intelligent Manufacturing & Mechatronics 
VOL. 01, ISSUE 02, 33 – 44 
DOI: https://doi.org/10.15282/mekatronika.v1i2.4280 
 

*CORRESPONDING AUTHOR  |  Nor Hidayati Abdul Aziz |  * hidayati.aziz@mmu.edu.my  
 42 

 
Figure 10. Estimated position by the ssSKF agent during the estimation phase. 

 

 
 

Figure 11. Estimated position of the optimum solution in the search space at t = 0 and t = 15. 
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Table 1. Summary of ssSKF predict, measure and estimate values from iteration 1 to 15. 

Iter. No. Predict Measure Estimate Reinitialize Fitness Xbest 

Iter. 1 {-0.0639,  
-0.6676} 

{0.9139,  
-0.4192} 

{0.5336,  
-0.4939} 

- 0.5287 {0.9271,  
-0.2500} 

Iter. 2 {2.1143,  
0.2601} 

{3.4279,  
-0.1199} 

{2.9577,  
0.0109} 

{-0.7491, 
0.0109} 

0.5613 {0.5336,  
-0.4939} 

Iter. 3 {-0.4695,  
-1.4458} 

{-0.0022 
-0.9146} 

{-0.1927, 
-1.1289} 

- 1.3116 {0.5336,  
-0.4939} 

Iter. 4 {0.9051, 
-1.7445} 

{1.0607, 
-0.6116} 

{1.0062, 
-1.0720} 

- 2.1616 {0.5336,  
-0.4939} 

Iter. 5 {1.0634, 
0.6431} 

{0.6431, 
1.6557} 

{1.0108, 
1.3132} - 2.7463 {0.5336,  

-0.4939} 
Iter. 6 {-0.3646, -

1.0066} 
{0.3740, -
0.5036} 

{0.0889, -
0.7121} - 0.5149 {0.5336,  

-0.4939} 
Iter. 7 {0.1327, 

0.3642} 
{0.0993, 
0.0815} 

{0.1125, 
0.1915} - 0.0493 {0.0889, 

0.7121} 
Iter. 8 {0.4633, -

0.5850} 
{0.8138, 
0.1811} 

{0.6891, -
0.1006} - 0.4849 {0.1125, 

0.1915} 
Iter. 9 {0.3977, -

0.6108} 
{0.2270, -
0.0870} 

{0.2981, -
0.2642} - 0.1587 {0.1125, 

0.1915} 
Iter. 10 {0.5315, 

0.1493} 
{0.6249, 
0.1870} 

{0.5998, 
0.1738} - 0.3900 {0.1125, 

0.1915} 
Iter. 11 {0.2555, -

0.2190} 
{0.1129, 
0.1910} 

{0.1624, 
0.0568} - 0.0296 {0.1125, 

0.1915} 
Iter. 12 {-0.0936, -

0.4359} 
{-0.2116, -

0.8859} 
{-0.1637, -

0.6727} - 0.4793 {0.1624, 
0.0568} 

Iter. 13 {0.3575, 
0.2048} 

{0.2916, 
0.3479} 

{0.3120, 
0.2884} - 0.1806 {0.1624, 

0.0568} 
Iter. 14 {0.1132, 

0.0160} 
{0.0714, -
0.0243} 

{0.0872, -
0.0088} - 0.0077 {0.1624, 

0.0568} 
Iter. 15 {0.3844, -

0.2262} 
{0.1900, -
0.3336} 

{0.2573, -
0.3032} - 0.1581 {0.0872, 

0.0088} 
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