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Introduction 
The simulated Kalman filter (SKF) has been 

introduced in 2015 for numerical optimization 
problems [1-3]. It was introduced as population-based 
metaheuristics, where the search for optimal solution 
is conducted by a group of agents. The agents of SKF 
work like Kalman filters [4], where they go through 
prediction, measurement, and estimation process in 
every iteration. The measurement in SKF is a 
simulated measurement which is obtained using 
mathematical equation. 

Many studies on SKF can be found in literature. 
For example, the SKF has been studied fundamentally 
[5-6]. The SKF also has been extended for binary 
optimization problems [7] and combinatorial 
optimization problems [8-10]. Hybridization of SKF 
with particle swarm optimization (PSO), gravitational 
search algorithm (GSA), and opposition-based 
learning [11-17] have also been proposed for better 
performance. Other variants called parameter-less 
SKF and randomized SKF algorithms were proposed 
in [18-19]. The SKF has also been applied for real 
world problems like the adaptive beamforming in 
wireless cellular communication [20-23], airport gate 
allocation problem [24-25], feature selection of EEG 
signal [26-27], system identification [28-29], image 
processing [30-31], controller tuning [32], and PCB 
drill path optimization [33-34]. 

This paper presents the first tutorial on SKF which 
emphasizes on the calculation aspect of SKF. This 

paper consist of two parts. The first part explains the 
fundamentals of the SKF while the second part shows 
a numerical example based on a function minimization 
problem. 

The Simulated Kalman Filter 
The simulated Kalman filter (SKF) algorithm starts 

with the initialization of the population. Then, the 
solutions of the initial population are evaluated, and 
the best-so-far solution is updated. Next, the SKF 
algorithm iteratively improves its estimation by using 
the standard Kalman filter framework which 
comprises of predict, measure, and estimate. For a 
bounded constraint problem, if the estimated value 
falls outside the search space, its value will be re-
initialized. This process continues until the stopping 
condition is met. The flowchart of the SKF algorithm 
is illustrated in Figure 1. 

The SKF algorithm starts with the random 
initialization of its agents’ estimated state within the 
search space, to produce the initial solution, X(0). The 
initial estimated state of each agent, Xi(0), is 
distributed randomly in uniform distribution within 
the search space in every dimension. A normally 
distributed random number, 𝑟𝑎𝑛𝑑𝑛!", defined in the 
range of (0,1) with a mean of 0.5, is specified in every 
dimension, d, for the initial error covariance of each 
agent, Pi(0). Last but not least, the maximum number 
of iterations, tMax, is initialized based on the 
maximum number of function evaluations. 
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Figure 1. The flowchart of the SKF. 

 
The iteration begins with fitness evaluation of the 

N agents, fit(X(t)), where X(t) = {X1(t), X2(t), …, Xi(t), 
…, XN(t)}, where t is the iteration number. Then, the 
best solution in the corresponding iteration, Xbest(t), is 
updated according to the type of the optimization 
problem. In minimization problem, Xbest(t) will assume 
the position of the agent with the minimum fitness in 
the corresponding iteration, whereas, for 
maximization problem, Xbest(t) will assume the 
position of the agent with the maximum fitness in the 
corresponding iteration. 

After that, the best-so-far solution called as the true 
value, Xtrue, is updated. The true value, Xtrue, is updated 
only if a better solution is found, mathematically 
fit(Xbest(t)) < fit(Xtrue) for minimization problem or 
fit(Xbest(t)) < fit(Xtrue) for the maximization problem. 

Then, the best solution in the 
corresponding iteration, Xbest(t), is updated according 
to the type of the optimization 
problem. In minimization problem, Xbest(t) will assume 
the position of the agent with 
the minimum fitness in the corresponding iteration, 
whereas, for maximization problem, Xbest(t) will 
assume the position of the agent with the maximum 
fitness in the corresponding iteration. 

The search strategy in SKF algorithm has three 
phases; predict-measure-estimate. During the 
prediction phase, the current predicted state, Xi(t|t+1), 
is assumed to be the estimated value: 

 

𝑋!	(𝑡|𝑡 + 1) = 𝑋!	(𝑡)                               (1) 
 

This equation implies that the optimum solution is 
predicted to be located at the previously estimated 
position. The predicted error covariance for each 
agent, P(t|t+1), on the other hand, is predicted to be 
influenced by the process noise, Q. Hence, the error 
covariant is predicted as follows: 

 
P(t|t+1) = P(t) + Q                                                   (2) 
 
where Q is called process noise. In this paper, Q = 
rand. Meaning that a normally distributed random 
number, rand, defined in the range of (0,1) with a 
mean of 0.5, is specified in every dimension as the 
process noise and it is added to the currrent error 
covariance, P(t). 

In SKF, measurements are simulated using an 
agent’s prediction and Xtrue. The dimensional wise 
calculation of measured value for each dimension of 
agent ith is calculated as follows: 

      
Zi(t) = Xi(t|t+1) + sin(2πrandi(t)) × |Xi(t|t+1)  ̶  Xtrue|(3) 
 
where randi(t) is a random value within the range of 
[0,1]. The estimation phase follows the measurement 
phase and the estimated next value is updated using 
(4): 

 
Xi(t+1) = Xi(t|t+1) + K(t) × (Zi(t)  ̶ Xi(t|t+1))            (4) 
 
where K(t) is the Kalman gain, which is calculated as 
follows: 
 
K(t) = P(t|t+1)/(P(t|t+1)+ R)                                       (5) 
 
where R=randn is the measurement noise. Then, the 
current error covariant estimate is updated in 
estimation phase using (6): 
 
P(t+1) = (1 ̶ K(t)) × P(t|t+1)                                        (6) 
 
These steps continue until at the end of the iteration or 
at the end of the fitness evaluation. 

Numerical Example 
Consider a simple two-dimensional sphere 

function given by (7).  
 

f(X) = 𝑥$ 2 + 𝑥% 2                                                     (7) 
 

For simplicity, consider the test function is 
bounded in both dimensions by [-2,2]. Figure 2 shows 
the three-dimensional view of the this function. The 
ideal solution for the given objective function is at the 
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center of the search space (0,0), where the fitness value 
is equal to 0 (minimization problem).  

In this example, to illustrate how the SKF 
algorithm operates, three agents are used. Each agent 
i is represented by a state vector of two dimensions, 
𝑿! (𝑡) = {𝑥!$ + 𝑥!%}. For minimization problem, the 
fitness of the solution is first set to infinity, fit(Xtrue) = 
∞. 

The first step is initialization. At t = 0, the initial 
estimated state of each agent, 
Xi(0), is distributed randomly in uniform distribution 
within the search space of [-2,2] in 
every dimension. A normally distributed random 
number, randn, defined in the range 
of (0,1) with a mean of 0.5, is specified in every 
dimension for the initial error covariance 
of each agent, Pi(0). 

 
 

 
 

Figure 3 illustrates the position of the estimated 
state of the SKF agents during initialization at t = 0, on 
the contour plot of the sphere function’s search space. 
The position of the ideal solution is marked by ‘*’, 
while the position of agents is represented by square 
boxes. 

In the second step, the fitness of each agent is first 
evaluated using (7). 
 

 
 

Then, based on the fitness values, Xbest(0) and Xtrue 
are determined and updated. In this specified iteration, 
it is found that the first agent has the most minimum 
fitness in the corresponding iteration, thus it is 
designated as  Xbest(0). And since its fitness is the best 
fitness found so far (0.9220 < ∞), thus, the true value 
is updated (Xtrue = Xbest(0)). Figure 4 shows the Xtrue 
after fitness evaluation step. 

 
 
Figure 2. Three-dimensional view of sphere 
function. 

 
The third step start with prediction phase. In SKF, 

the state prediction follows the last estimated state, 
while the error covariance is predicted to be influenced 
by the process noise. A normally distributed random 
number, randn, defined in the range of (0,1) with a 
mean of 0.5, is specified in every dimension as the 
process noise of each agent, Qi(0). Let the process 
noise for each agent, Qi(0), be: 

 

         
 

The predicted state estimate and the predicted error 
covariance for each agent are calculated as follows: 
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Figure 3. Estimated position by SKF agents in the search space (initialization). 
 
 

 
 

Figure 4. Best-so-far solution (Xtrue) update. 
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Figure 5. Predicted position by SKF agents in the search space during prediction phase. 
 
 
Figure 5 shows the predicted position of the 

optimal solution by the SKF agents is the position of 
the previously estimated state, which is, in this case, is 
the initial state estimate. The prediction phase is 
followed by the simulated measurement phase. 
Equation (3) is used to get the simulated measurement 
value for each agent. Let the random number for each 
agent, randi, be: 

 

        
 
Hence, 
 

 

 

Figure 6 shows the simulated measurement value 
for each agent and their corresponding range. The 
effect of the sine function is to provide a balance 
between exploration and exploitation during the 
simulated measurement process while allowing more 
possibility at the extreme values. 

A simulated measurement may take any value 
bounded by the distance between the predicted state 
estimate to the best-so-far solution, Xtrue, in both 
dimensions. The farther predicted value from the Xtrue, 
the bigger the range. This allows more exploration of 
the search space by the agents. The simulated 
measurement value for the first agent is its own 
position because it holds the best fitness so far. 

Lastly, estimation for the next time step is carried 
out by calculations based on (4). The estimation phase 
is preceded by calculation of Kalman gain using (5). 
A normally distributed random number, randn, 
defined in the range of (0,1) with a mean of 0.5, is 
specified in every dimension as the measurement 
noise of each agent, Ri(0). Let the measurement noise 
for each agent, Ri(0), be: 
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Figure 6. Simulated measurement value of SKF agents during the measurement phase. 
 
 
 

 
Thus, 
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Figure 7. Estimated position by SKF agents during the estimation phase. 
 
 
 

 
Figure 7 shows the estimation position of the 

optimum solution by the SKF 
agents during the estimation phase. Since the location 
of the second agent is outside the 
search space, X2(1)	=	{2.3095,1.0463}, the value of 
the first dimension of the second 
agent, 𝑋%$(1), is reinitialized randomly to be within the 
search space. Thus, the estimation 
for the next time step (after satisfying the boundary 
constraints) for all the three agents 
are: 
 

 
 
Figure 8 shows the position of the estimated states 

of the SKF agents during estimation after re-
initialization of the estimated state’s dimension that 
falls outside the search space. An agent with ‘+’ 
marking is the agent that holds the best fitness and thus 
named as the best-so-far solution, Xtrue. Note that the 
first agent retains its estimation of the optimum 
solution from initialization to estimation because it 
holds the best-so-far solution for the corresponding 
iteration. This best-so-far solution, however, is 
responsible to guide the other agents to make an 
informed exploration or exploitation on the specific 
region of the search space.  

The fitness evaluation, predict, measure, and 
estimate will be repeated until the stopping condition 
is met. Table 1 to Table 3 give a summary of the 
agents’ predict, measure and estimate values from t = 
1 to t = 5 with their corresponding Kalman gain, and 
fitness value.  

The fitness trends of all the three agents from 
iteration 0 to 5 are shown in Figure 9. From the figure, 
it is apparent that agent 1 initially hold the best fitness, 
thus is responsible to lead the search. However, in 
iteration two, the agent 2 makes a better estimation, 
thus becoming the best-so-far solution and then leads 
the other agents to locate the optimal solution in 
iteration three. This results in a better estimation by 
agent 1, thus agent 1 becomes the best-so-far solution 
again and continues to influence other agents in the 
next three iterations.  

Conclusions 
This paper is the first tutorial on SKF algorithm 

that emphasizes on a numerical example for easy and 
intuitive explanations. This tutorial would be helpful 
to those who work on the fundamentals and 
applications of SKF as well as to students who are new 
to optimization research. 
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Figure 8. Estimated position of the optimum solution in the search space at t = 1. 

 
Table 1. Summary of SKF predict, measure and estimate values from iteration 1 to 5 for agent 1. 

 
 

Table 2. Summary of SKF predict, measure and estimate values from iteration 1 to 5 for agent 2. 

 
 

Table 3. Summary of SKF predict, measure and estimate values from iteration 1 to 5 for agent 3. 
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Figure 9. Fitness trends of SKF agents from iteration t = 0 to t = 5. 
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