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Introduction 
Single-agent Finite Impulse Response Optimizer 

(SAFIRO) is a new estimation-based optimization 
algorithm which mimics the work procedure of the 
ultimate unbiased finite impulse response (UFIR) 
filter [1]. Introduced in 2018, the SAFIRO is the latest 
edition of estimation-based algorithms.   

On the other hand, a metaheuristic algorithm called 
simulated Kalman filter (SKF), has been proposed in 
2015 for numerical optimization problems [2-4]. It 
was intro-duced as population-based metaheuristics, 
where the search for optimal solution is conducted by 
a group of agents. The agents of SKF work like 
Kalman filters [5], where they go through prediction, 
measurement, and estimation process in every 
iteration. The measurement in SKF is a simulated 
measurement which is obtained using mathematical 
equation. 

Many studies on SKF can be found in literature. 
For example, the SKF has been studied fundamentally 
[6-7]. The SKF also has been extended for binary 
optimization problems [8] and combinatorial 
optimization problems [9-11]. Hybridization of SKF 
with particle swarm optimization (PSO), gravitational 
search algorithm (GSA), and opposition-based 
learning [12-18] have also been proposed for better 
performance. Other variants called parameter-less 
SKF and randomized SKF algorithms were proposed 
in [19-20]. The SKF has also been applied for real 
world problems like the adaptive beamforming in 

wireless cellular communication [21-24], airport gate 
allocation problem [25-26], feature selection of EEG 
signal [27-28], system identification [29-30], image 
processing [31-32], controller tuning [33], and PCB 
drill path optimization [34-35]. 

Given the popularity of SKF algorithm and the 
amount of studies reported on the fundamental 
improvements and application of SKF, the 
performance of the SAFIRO is compared with that of 
SKF algorithm based on CEC2014 benchmark dataset. 
In the subsequent section, the SKF algorithm is firstly 
introduced. Then, the SAFIRO is explained. Next, 
experimental procedure is presented, and the result of 
the experiment is shown. Finally, the result of a 
statistical analysis is shown to conclude the findings 
of this study. 

The Simulated Kalman Filter 
The SKF algorithm follows the algorithm shown in 

Fig. 1. One iteration consists of fitness evaluation, 
update the best solution, predict, measure, and 
estimate. 

Using n agents, a set of solution can be denoted as 
X(t) = {X1(t), X2(t), …, Xn(t)}, where t is the iteration 
number. The SKF starts with random initialization of 
solutions. In each iteration, the fitness of the agents’ 
are evaluated. Then, the agent with the best fitness 
value is identified as the best solution of the current 
population, Xbest(t). Next, the best Xbest(t) from the first 
iteration is selected as Xtrue.  
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Figure 1. The flowchart of the SKF. 

During the prediction phase, the current predicted 
state, Xi(t|t+1), is assumed to be the estimated value: 

𝑋!	(𝑡|𝑡 + 1) = 𝑋!	(𝑡) (1) 

The error covariant is also updated as follows: 

P(t|t) = P(t) + Q        (2) 

where P(t) and P(t|t+1) denote the current error 
covariant estimate and current transition error 
covariant estimate, respectively. Note that the error 
covariant estimate is influenced by the process noise, 
Q.  

In SKF, measurements are simulated using an 
agent’s prediction and Xtrue. The dimensional wise 
calculation of measured value for each dimension of 
agent ith is calculated as follows: 

Zi(t) = Xi(t|t) + sin(2πri(t)) × |Xi(t|t)  ̶  Xtrue|   (3) 

where ri(t) is a random value within the range of [0,1]. 
The estimation phase follows the measurement phase 
and the estimated next value is updated using (4): 

Xi(t+1) = Xi(t|t+1) + K(t) × (Zi(t)  ̶ Xi(t|t+1))           (4) 

where K(t) is the Kalman gain, which is calculated as 
follows: 

K(t) = P(t|t+1)/(P(t|t+1)+R)  (5) 

where R is the measurement noise. Then, the current 
error covariant estimate is updated in estimation phase 
using (6): 

P(t+1) = (1 ̶ K(t)) × P(t|t+1)  (6) 

These steps continue until at the end of the iteration or 
at the end of the fitness evaluation. 

The Single-agent Finite Impulse Response 
Optimizer (SAFIRO) 

The SAFIRO is a single-agent metaheuristic 
algorithm, recently proposed for single-objective 
numerical optimization problems, which mimics the 
framework of the estimation process in UFIR filter [1]. 
Like the UFIR filter, SAFIRO’s agent responsible to 
perform the measurement and estimation stage to 
estimate the solution. The solution in SAFIRO 
represented by the estimation of the agent’s position. 

The flowchart of SAFIRO is depicted in Fig. 2. The 
horizon length, N is the parameter that needs to be used 
in SAFIRO. As SAFIRO needs N measurements to 
begin the optimization process, the value of N is 
defined during the initialization stage. Then, by using 
a single agent, SAFIRO starts the process with the 
initialization of N measurements, Y(t) = rand(U[Xmin, 
Xmax]). After initialization, these N random initial 
measurements are evaluated by using the fitness 
function of the problem to determine the initial 
X_best_so_far. X_best_so_far represents the best-so-
far solution. For minimization problem, the initial 
measurement with the smallest fitness value is 
recorded as X_best_so_far, meanwhile, for the 
maximization problem, the initial measurement with 
the largest fitness value is recorded as X_best_so_far. 

Next, the agent undergoes the measurement stage. 
In the UFIR filter operation, the measurement data can 
be obtained from the sensor. However, in SAFIRO, 
the measurement is simulated by random mutation of 
X_best_so_far and shrinking local neighbourhood 
method. Each dimension of the problem to be 
optimized has a random value in the range of 0 to 1. 
The dimensions with a random value equal to or 
smaller than 0.5, keep the X_best_so_far value as their 
measurement value, as in (7): 
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Figure 2. The flowchart of the SAFIRO. 

Yd(t) = X_best_so_fard (7) 

On the other hand, the dimensions with a random 
value larger than 0.5, are chosen to be mutated to 
generate a new candidate solution. This mutation 
process is conducted in a local neighbourhood of 
X_best_so_far. The measurement value for these 
dimensions can be calculated as in (8).  

Yd(t) = X_best_so_fard + rand(U[-δ, δ]) (8) 

This measurement process helps to encourage 
exploration through the mutation process, and at the 
same time creating a balance between the exploration 
and exploitation through the shrinking local 
neighbourhood. In the local search method, the search 
area is centred around X_best_so_far. The radius of 
the local neighbourhood, δ, can be computed by using 
as follows; 
δ = exp( ̶ (βt)(T-1)) × 0.5(Xmax  ̶  Xmin)                 (9) 

where t is the number of the current iteration, T is the 
number of maximum iteration, Xmax is the upper limit 
of search space, Xmin is the lower limit of search space, 

and β is a coefficient value. This coefficient value 
controls the reduction speed of the neighbourhood’s 
size.  

After the measurement stage, SAFIRO’s agent 
moves to the estimation stage. At this stage, the 
solution of SAFIRO is updated in a finite length 
according to the number of N. Each iteration, t, 
consists of sub-iteration, k. As depicted in Fig. 3, the 
first two points of the horizon are used for initial 
estimation, 𝑋)(k=2). Initial estimation is generated 
randomly between [lower limit, upper limit] of the 
first and the second point of the horizon. Then, the 
remaining points are used for iterative estimation 
update from 𝑋)(k=3) until 𝑋)(k=N). The solution of 
initial estimation is improved iteratively during this 
part which is depending on the value of N. The number 
of repetition for iterative estimation is equal to N-2 (as 
mentioned above, the first two points are used to 
generate the initial estimation). In this study, the effect 
of the number of N towards SAFIRO’s performance is 
observed. Iterative estimation can be computed by 
using (10) and (11): 

𝑿+(k) = 𝑿+(k – 1) + K(k)(Y(t – N + k) – 𝑿+(k – 1))  (10)
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Figure 3. An illustration of an estimation process in SAFIRO (N=4). 
 
  
K(k) = (k)-1                                                      (11) 
 
where 𝑋)(k) is the estimated solution for current point, 
meanwhile 𝑋)(k – 1) is the previous sub-iteration point. 
The measurement value, Y (t – N + k) and the Kalman-
like gain, K(k) influence the improvement of the 
solution. The value of K(k) can help to improve the 
estimation as the sub-iteration, k increases. The sub-
iteration process end when k=N is reached. The final 
value of k is then stored as X(t)=𝑋) (k). The agent’s 
updated solution for that corresponding iteration is 
represented by the estimated value of X(t).  

After obtaining the solution, X(t), the evaluation 
stage is done to evaluate its fitness. The fitness of X(t) 
is then compared to the fitness of X_best_so_far. The 
X_best_so_far is updated when a better solution is 
found. For minimization problem, X_best_so_far is 
updated if fit(X(t)) < fit(X_best_so_far), meanwhile 
for maximization problem, X_best_so_far is updated 
if fit(X(t)) > fit(X_best_so_far). Measurement and 
estimation stages are repeated until the maximum 
iteration, T is met, and the X_best_so_far returns as the 
solution to the given optimization problem. 

Experiment 
The CEC 2014 benchmark suite [36] is used for 

performance comparison. The experimental settings 
are as listed in Table 1. All parameter values listed in 
Table 1 follow the parameter setting in the CEC 2014 
benchmark suite. The maximum number of function 
evaluation, maxFES = 10,000 iterations × dimension, 
D. 

Regardless of the number of agents, a fair 
comparison of algorithms’ performance can be done 
by setting the same FES. To provide a fair evaluation 
for each comparison, the complexity of the problem is 
set as 50 dimensions, while the maxFES is set as 
500,000. The stopping condition is set to be the 
maxFES. All experiments are run 51 times on each test 
function. Hence, the evaluations are based on the mean 
fitness value over 51 runs time with 500,000 maxFES 
of 50 problem dimensions. For all functions, the 
search space in the range of [-100,100] is used for all 
dimensions. 

For SKF, the value of the initial error covariance, 
P(0), the measurement noise, R, and the process noise, 
Q are set as random [0,1]. For FIROs, the coefficient, 
β value is assigned as β=10 to allow moderate 
transition from the exploration phase to the 
exploitation phase. The coefficient, β,  is a control 
parameter employed in the shrinking local 
neighborhood method of FIROs, which is computed 
during the measurement step. This parameter is used 
in the exponential decay equation to control the 
reduction of step-size. 

Result and Discussion 
The experimental results are tabulated in Table 2, 

Table 3, Table 4, and Table 5. Even though the 
SAFIRO outperforms the SKF in majority case studies 
of hybrid and composition functions, mix results are 
observed for unimodal and simple multimodal 
functions. To obtain a concrete conclusion, Wilcoxon 
signed rank test [37] was used. 
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Table 1. Experimental setting. 

Parameter Value 
Search space [-100,100] 

No. of runs 51 

No. of dimensions 50 
No. of function evaluations 10,000 iterations×50 dimensions = 500,000 maxFES 

 

Table 2. The mean fitness values of SAFIRO and SKF for unimodal functions. 

Function Ideal Fitness SAFIRO SKF 

1 100 7.98E+05 1.18E+07 

2 200 7695.60 2.35E+08 

3 300 300.0000 1.90E+04 

 

Table 3. The mean fitness values of SAFIRO and SKF for simple multimodal functions. 

Function Ideal Fitness SAFIRO SKF 

4 400 488.72 569.32 

5 500 520.00000 520.03 

6 600 619.03 636.77 

7 700 700.0100 702.87 

8 800 994.29 818.99 

9 900 1095.90 1086.43 

10 1000 5785.20 1635.11 

11 1100 6462.40 6810.65 

12 1200 1200.10 1200.32 

13 1300 1300.60 1300.58 

14 1400 1400.500 1400.30 

15 1500 1511.20 1627.16 

16 1600 1620.60 1619.60 

 

Table 4. The mean fitness values of SAFIRO and SKF for hybrid functions. 

Function Ideal Fitness SAFIRO SKF 

17 1700 4.60E+04 1.44E+06 

18 1800 3980.80 6.33E+07 

19 1900 1920.60 1960.45 

20 2000 2476.10 3.84E+04 

21 2100 6.11E+04 2.30E+06 

22 2200 2920.90 3447.67 
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Table 5. The mean fitness values of SAFIRO and SKF for composition functions. 

Function Ideal Fitness SAFIRO SKF 

23 2300 2645.00 2656.15 

24 2400 2678.70 2668.91 

25 2500 2712.50 2733.69 

26 2600 2778.70 2792.64 

27 2700 3519.20 4003.78 

28 2800 5252.50 7476.19 

29 2900 2.89E+04 1.20E+05 

30 3000 3.87E+04 2.91E+04 
 

 
The Wilcoxon test usually is used when the 

population cannot be assumed to be normally 
distributed or it can be used to compare two related 
samples, matched samples, or repeated measurements 
on a single sample to assess whether their population 
mean ranks differ. Particularly, the null hypothesis for 
the test assumes that there is no significant difference 
between the mean error values of test algorithms while 
the alternative hypothesis tries to determine if there is 
a significant difference between test algorithms using 
5% (α = 0.05) significance level. Since the number of 
samples is 30, the critical value for the test is equal to 
152. The sum of ranks where the SKF algorithm 
outperforms the SAFIRO is denoted as R- while the 
sum of ranks where the BH algorithm is outperformed 
by the SAFIRO is denoted as R+. Hence, the SAFIRO 
is better than the SKF algorithm if R+ > R- and the 
SAFIRO is significantly better than the SKF algorithm 
if R- value is less than the critical value. Based on the 
mean accuracy of SAFIRO and SKF, R+ and R- 
obtained are 382 and 183, respectively. Hence, 
Wilcoxon test result shows that the SAFIRO algorithm 
is significantly better than the SKF algorithm. 

Conclusions 
The SKF is the most popular estimation-based 

optimization algorithm. On the other hand, the 
SAFIRO is the latest emerging estimation-based 
optimization algorithm. Since the original work of 
SAFIRO did not include the SKF in benchmarking, 
this paper brings these two algorithms to the same 
platform for a performance evaluation. It is found that 
for global optimization, the SAFIRO outperforms the 
SKF significantly. 
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