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ABSTRACT - Badminton, a fast-paced racket sport, demands precision, power, and strategic 
execution. While previous research has explored using inertial measurement units (IMUs) for 
stroke classification, this study presents an integration of sensor-embedded rackets with IMUs 
to provide a more accurate and automated approach. The collected motion data was 
processed and classified using machine learning models such as logistic regression, k-nearest 
neighbors (k-NN), and support vector machines (SVM). Of these, k-NN achieved the highest 
accuracy at 75 percent, with backhand strokes showing better classification precision. 
However, challenges in classifying forehand strokes suggest a need for further refinement in 
feature extraction. The study contributes a framework for improving stroke classification 
accuracy in badminton and offers insights into optimizing ML-driven motion analysis for more 
precise performance assessment in badminton. 
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1. INTRODUCTION 

Badminton, a sport with a rich history across continents, is known for its fast-paced gameplay involving rackets and 

shuttlecocks. Recognized as one of the fastest racket sports in the world, it combines precision, power, and strategy. Its 

global prominence began as a demonstration sport at the 1972 Munich Olympics, later becoming a medal event at the 

1992 Barcelona Games [1]. Today, badminton is played at all levels, from casual recreational matches to professional 

tournaments worldwide. Malaysia has long been a powerhouse in badminton, producing exceptional players like Datuk 

Lee Chong Wei, who held the world number one ranking for several years and earned multiple Olympic medals. Rising 

stars such as Lee Zii Jia, the 2022 Badminton Asia Champion, and the doubles team of Aaron Chia and Soh Wooi Yik, 

recent world champions, continue to uphold the nation’s legacy. Badminton remains a vital part of Malaysia’s sports 

culture, inspiring athletes to compete at the highest levels [2]. 

In badminton, mastering strokes is essential for success. Strokes are the fundamental techniques that drive gameplay, 

requiring players to execute movements with precision and adaptability. Recognizing and analyzing strokes helps athletes 

refine their techniques, improve their strengths, and address weaknesses [3]. Coaches depend on stroke analysis to design 

targeted training programs and develop effective game strategies [4]. However, traditional methods for stroke recognition 

rely heavily on manual observation, which is time-consuming, prone to human error, and inconsistent—making it less 

suitable for high-performance training [5]. Machine learning (ML) has opened new possibilities in sports analytics by 

efficiently processing complex data and identifying patterns. In badminton, ML automates stroke recognition, enabling 

faster, more accurate analysis. Using data from sensors like accelerometers and gyroscopes, ML models detect even minor 

variations in strokes and adapt to different playing styles and skill levels, benefiting players at all levels [6]. In Malaysia, 

where badminton is a cultural and competitive priority, adopting ML-based systems is key to staying competitive globally. 

Unlike video analysis, which has limitations like inconsistent angles and subjective interpretation, ML combined with 

sensor technology offers real-time, precise feedback, aligning with modern, data-driven sports science [7]. 

This study aims to improve stroke recognition by integrating sensor technology and ML. Sensors in racket handles 

will collect data on stroke motion and force, which ML algorithms will process for real-time, accurate classification. 

Various ML models, including decision trees, support vector machines, and neural networks, will be tested for accuracy, 

efficiency, and adaptability across players of different skill levels. While results are pending, this research is expected to 

set new standards in badminton performance analytics. The expected outcomes include a reliable stroke classification 

system offering detailed feedback on stroke mechanics, transforming training by enabling data-driven adjustments. 

Beyond badminton, the research could advance sports engineering and showcase ML's potential in performance analysis. 

By improving stroke recognition, the study aims to enhance training and support Malaysia’s badminton success, while 

advancing technology in sports and paving the way for future innovations in athletic performance analysis. 
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2. RELATED WORKS 

Wang et al. (2019) designed a deep convolutional neural network (CNN) model incorporating an adaptive feature 

extraction mechanism to track ten primary badminton strokes. Their approach achieved an impressive accuracy of 98.65 

percent, outperforming traditional stroke classification models and highlighting the effectiveness of deep learning in 

sports training applications [8]. Lin et al. (2020) developed an intelligent racket system that combined voiceprint-based 

algorithms with machine learning techniques for stroke detection. Their system demonstrated over 96 percent accuracy 

with personalized models and around 84 percent accuracy when using generalized models, underscoring the benefits of 

player-specific adaptation in stroke recognition [9]. Xia et al. (2020) introduced a hybrid clustering methodology for 

distinguishing between three badminton strokes—serve, drive, and smash—using a wristband-based sensor system. By 

employing a support vector machine (SVM) classifier, their approach achieved 76 percent accuracy, reinforcing the 

potential of wearable sensor technology in real-world sports training scenarios [10]. 

Lin et al. (2020) engineered a smart racket equipped with an acoustic sensor and an inertial measurement unit (IMU) 

for recognizing and documenting badminton strokes. Data were transmitted via Bluetooth to a smartphone, where a 

voiceprint-based algorithm identified hitting events with over 99.9 percent accuracy, surpassing commercial alternatives. 

Stroke classification via machine learning yielded 96.5 percent accuracy for personalized models and 84 percent for 

generalized models [7]. Peralta et al. (2022) examined badminton stroke classification by integrating accelerometer and 

gyroscope data. Their study applied data augmentation and transfer learning, achieving 93.35 percent accuracy using 

gyroscope-based deep learning models, demonstrating their efficacy in stroke recognition [11]. Mekruksavanich et al. 

(2022) leveraged deep residual networks on IMU sensor data for badminton action recognition and player assessment. 

Their method achieved 98.00 percent accuracy in activity classification and 98.56 percent in player evaluation, 

underscoring the reliability of deep learning models in analyzing complex actions during matches [12]. 

Toshniwal et al. (2022) employed computer vision and machine learning techniques to evaluate player swings against 

an ideal swing database. Their system achieved 90.84 percent accuracy in recognizing and assessing badminton swings, 

providing valuable insights for improving player performance [5]. Liu (2022) conducted research on badminton stroke 

classification using support vector machines (SVM) and convolutional neural networks (CNN). Their findings indicated 

that acceleration and velocity data captured during play effectively identified stroke events such as drive, lift, and block, 

with CNN outperforming both SVM and random forest models in sensor-based recognition [13]. Yip et al. (2022) 

developed a badminton smash classification system utilizing deep learning-based video analysis. The study compared the 

performance of ResNet-18, GoogleNet, and VGG-16 models, with ResNet-18 achieving superior accuracy of 97.51 

percent during training and 98.86 percent in testing using Jupyter software. Meanwhile, GoogleNet reached its highest 

accuracy of 83.04 percent in training and 97.20 percent in testing using Jetson Nano hardware [14]. 

Ghazali et al. (2022) classified badminton strokes using inertial sensors and machine learning algorithms. Data 

collected from ten players underwent preprocessing and feature extraction, followed by classification using Decision 

Tree, kNN, and SVM models. Among these, Cubic SVM exhibited the highest accuracy at 83.4 percent, proving its 

efficiency in sports activity recognition [6]. Ghosh et al. (2022) presented DeCoach, a deep learning framework designed 

to assess badminton players by analyzing both their stroke execution and body posture. Using Inertial Measurement Units 

(IMUs), the system tracks the movements of both upper and lower limbs. A CNN classifier achieved 89.09 percent 

accuracy in stroke classification, while a deep regressor predicted player performance with an R² score of 88.84 percent. 

The results showed that professional players outperformed intermediates and novices, with success rates of 86.11 percent 

and 76.38 percent, compared to 58.33 percent and 30.55 percent, respectively [15]. 

Isa et al. (2024) introduced a deep learning-based system for real-time badminton stroke classification, eliminating 

reliance on manual annotation methods. Video data captured from off-court angles were processed using OpenCV and 

MediaPipe for feature extraction, with three models—Simple Dense Neural Network (SDNN), Recurrent Neural Network 

(RNN), and RNN with Gated Recurrent Unit (GRU)—evaluated. Using an 80:20 training-validation split across 300 

stroke videos per class, the study provided valuable insights for optimizing player strategies [16]. Seong et al. (2024) 

addressed the scarcity of comprehensive badminton action datasets by compiling a multi-sensor dataset focused on 

forehand clear and backhand drive strokes. Data collected from 25 players of varying skill levels included 7,763 swing 

instances with eye tracking, body tracking, muscle signals, foot pressure, video recordings, and expert annotations. A 

proof-of-concept machine learning model validated the dataset’s relevance, highlighting its significance for advancing 

badminton training and biomechanics research [17]. 

3. METHODOLOGY 

This chapter outlines the methodology for badminton activity recognition, combining multi-sensor data and machine 

learning classification. It details the process flow, model selection, and evaluation. Data will be collected from a IMU-

embedded racket, pre-processed, and classified using ML models, with performance analysis after testing. 

3.1 Data Collection 

The system architecture, illustrated in Figure1, integrates a sensor-based measurement system within the badminton 

racket handle. This setup comprises an Arduino Nano 33 BLE Sense Rev2 microcontroller, a force sensor, and a microSD 
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card module. Sensor data from badminton stroke events are collected and stored as .csv files on the microSD card for 

further analysis. The Arduino Nano 33 BLE Sense Rev2 features a 9-axis inertial measurement unit (IMU), which includes 

an accelerometer, gyroscope, and magnetometer, enabling six degrees of freedom (DOF) motion tracking. This satisfies 

the requirement for precise motion analysis by measuring acceleration, angular velocity, and magnetic field strength. 

Sensor data were processed in Python using Jupyter Notebook, with Pandas for manipulation, NumPy for numerical 

operations, and SciPy for signal processing. Visualization was done with Matplotlib and Seaborn, streamlining the 

workflow for machine learning classification. A semi-professional badminton racket was used to balance accessibility 

and performance. The system identifies five strokes—smash, forehand drive, forehand clear, backhand drive, and 

backhand clear—performed by beginner players, with 100 repetitions per stroke to create a robust dataset for model 

training. Data were collected from the IMU (accelerometer and gyroscope), capturing racket orientation and angular 

velocity for comprehensive motion analysis and feature extraction. 

 

Figure 1. Racket with integrated measurement electronics 

3.2 Data Pre-Processing 

This process segments individual strokes from continuous motion data, like Player 2's Backhand Clear shown in 

Figure2. Gyroscopic signal peaks indicate stroke events, with rest periods removed. A fixed 9-frame window was chosen 

for peak detection and windowing, based on exploratory data analysis (EDA). Despite challenges like overlapping peaks 

and missed strokes, the approach effectively captured stroke events, with start and end frames, and class labels recorded. 

Player IDs were also stored for future analysis. Hand-engineered features will be added for improved classification. 

 

Figure 2. Example of player 2's backhand clear stroke data segmentation 
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3.3 Feature Selection 

After processing data from the accelerometer and gyroscope, several features were added to enrich the dataset. These 

include statistical measures like kurtosis, range, magnitude, minimum, maximum, average, and skewness, which provide 

insights into the distribution and characteristics of the data. These features improve dataset comprehensiveness, enabling 

deeper analysis and enhancing classification accuracy. 

3.4 Data Splitting 

Data splitting separates the dataset into 80 percent training and 20 percent testing to evaluate model performance and 

prevent overfitting, ensuring a balanced approach for development and assessment. 

3.5 Machine Learning Models 

This work explored three machine learning models for classifying stroke events based on processed data, including: 

a) Logistic regression is a supervised model used for classification, outputting probabilities between 0 and 1 via the 

Sigmoid function. It classifies data based on a threshold value. 

b) k-Nearest Neighbors (k-NN) classifies data by comparing its similarity to existing data points, assuming similar 

points belong to the same category. It is a non-parametric "lazy learner" that stores the dataset and classifies new 

data at the time of testing. 

c) Linear Support Vector Machine (SVM) fits a hyperplane to divide the data, classifying new points based on 

which side of the hyperplane they fall. 

3.6 Model Evaluation 

In this work, a multi-class classification approach is used to distinguish between different types of badminton strokes: 

Backhand Clear, Backhand Drive, Forehand Clear, Forehand Drive, and Forehand Smash. The performance of the 

machine learning models is evaluated using a confusion matrix (see Table 1), which helps identify how well the model 

predicts each stroke. 

Table 1. Multi-class confusion matrix 

The Stroke 

Predicted Stroke 

Backhand 

Clear 

Backhand 

Drive 

Forehand 

Clear 

Forehand 

Drive 

Forehand 

Smash 

Backhand Clear TP FP FP FP FP 

Backhand Drive FN TP FP FP FP 

Forehand Clear FN FN TP FP FP 

Forehand Drive FN FN FN TP FP 

Forehand Smash FN FN FN FN TP 

A confusion matrix is a square matrix where each row represents the true class, and each column represents the predicted 

class. The diagonal elements of the matrix rep-resent True Positives (TP), where the model correctly predicts the stroke 

type. False Positives (FP) occur when the model incorrectly predicts a stroke type, while False Negatives (FN) represent 

cases where the model fails to predict the correct stroke type. True Negatives (TN) refer to instances where the model 

correctly predicts the absence of a particular stroke. 

This matrix provides a comprehensive view of the model's performance, allowing for the calculation of precision, 

recall, and F1-score for each stroke. These metrics offer insights into the model's accuracy in classifying strokes and help 

identify areas for improvement in the classification process. Recall (or sensitivity, true positive rate) measures the 

percentage of correctly detected positive predictions out of all actual positive instances. It is calculated using true positives 

(TP) and false negatives (FN) from the confusion matrix: 

Recall =  
TP

TP + FN
 (1) 

Recall is crucial in domains where missing positive examples can have significant consequences, helping to minimize 

false negatives. Precision (or positive predictive value) evaluates the accuracy of positive predictions, reflecting the 

proportion of correct positive predictions relative to the total predicted positives. It is calculated as: 

Precision =  
TP

TP + FP
 (2) 

Precision is especially important when the cost of false positives is high or when high accuracy in positive predictions is 

required. F1-Score combines precision and recall into a single metric, offering a balanced evaluation by accounting for 

both false positives and false negatives. It is particularly useful in managing unbalanced datasets: 
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F1 Score = 2 × (
Precision × Recall

Precison + Recall
) (3) 

The F1-score enables informed decisions when both types of classification errors need to be minimized. Accuracy 

measures the proportion of correct predictions (both positive and negative) out of the total instances. While accuracy is a 

common performance metric, it can be misleading in cases of imbalanced datasets. Considering precision, recall, and F1-

score in conjunction with accuracy provides a more comprehensive understanding of the model's performance. 

4. RESULTS AND DISCUSSION 

4.1 Logistic Regression 

The logistic regression (LR) model achieved an overall accuracy of 67 percent in classifying badminton strokes, with 

varying performance across stroke types, as shown in Table 2. The Backhand Drive demonstrated the best results with an 

F1-score of 0.88 (precision: 0.85, recall: 0.92), while the Backhand Clear also performed well, achieving an F1-score of 

0.76. These results suggest that the model effectively distinguishes backhand strokes due to their unique features. It should 

disclose any financial or non-financial interests such as political, personal, or professional relationships that may be 

interpreted as having influenced the manuscript. The phrase "The authors declare no conflicts of interest" should be 

included if there is no conflict of interest. 

Table 2. Classification results for badminton strokes using LR model 

Stroke Precision Recall F1-Score 

Backhand Clear 0.78 0.74 0.76 

Backhand Drive 0.85 0.92 0.88 

Forehand Clear 0.56 0.67 0.61 

Forehand Drive 0.77 0.61 0.68 

Forehand Smash 0.37 0.37 0.37 

Model Accuracy 0.67 

The confusion matrix shows good performance for backhand strokes, but forehand strokes, especially Forehand Smash, 

are often misclassified. The LR model’s linear decision boundaries struggle with the non-linear nature of the data, and 

class imbalances affect underrepresented strokes. To improve, addressing class imbalances and exploring more complex 

models like ensemble methods or deep learning may help capture the data’s complexity. 

In summary, the LR model performs well for backhand strokes but struggles with forehand strokes. Future efforts 

should focus on better feature representation, handling class imbalances, and exploring more advanced models. 

 

Figure 3. Confusion matrix of LR model in classifying badminton strokes 
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4.2 K-Nearest Neighbors  

The k-Nearest Neighbors (k-NN) classifier achieved an overall accuracy of 75 percent in classifying five badminton 

strokes: Backhand Clear, Backhand Drive, Forehand Clear, Forehand Drive, and Forehand Smash. The confusion matrix 

(Figure 4) and de-tailed classification metrics (Table 3) highlight the model's performance across these stroke categories. 

The k-NN model demonstrated strong classification performance for Backhand Drive, with a precision of 0.89, recall of 

0.93, and F1-score of 0.91. Backhand Clear also performed well, achieving a recall of 0.90 and an F1-score of 0.84. These 

results indicate that the model can reliably identify these strokes, likely due to distinct motion characteristics that 

differentiate them from others. 

In contrast, the classification of Forehand Smash proved to be the most challenging. It achieved a recall of only 0.47 

and an F1-score of 0.43, indicating significant mis-classification with other strokes, particularly Forehand Drive. This is 

evident in the confusion matrix, where 35 percent of Forehand Smash instances were misclassified as Forehand Drive. 

Such overlaps may arise due to similarities in motion patterns between these two strokes, particularly when executed with 

similar power or trajectory. 

 
Figure 4. Confusion matrix of k-NN model in classifying badminton strokes 

 

Table 3. Classification results for badminton strokes using k-NN model 

Stroke Precision Recall F1-Score 

Backhand 

Clear 

0.78 0.90 0.84 

Backhand 

Drive 

0.89 0.93 0.91 

Forehand 

Clear 

0.57 0.76 0.66 

Forehand 

Drive 

0.74 0.64 0.68 

Forehand 

Smash 

0.83 0.47 0.43 

Model 

Accuracy 

0.75 

Forehand Clear also exhibited moderate performance, with a recall of 0.76 and an F1-score of 0.66. This suggests that 

while the model can identify most Forehand Clears, there remains some ambiguity, as indicated by misclassifications 

spread across other strokes. Forehand Drive, although achieving a precision of 0.74, struggled with recall (0.64), 

highlighting difficulties in consistently recognizing this stroke. 
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The results highlight the strengths of k-NN in distinguishing strokes with distinct kinematic profiles, such as Backhand 

Drive and Backhand Clear. However, strokes with overlapping characteristics, such as Forehand Smash and Forehand 

Drive, require further attention. The relatively low performance for Forehand Smash could stem from inadequate feature 

separation in the input data or inherent similarities in execution styles. Moreover, the confusion matrix suggests potential 

feature overlap between Forehand Clear and Forehand Drive, which further underscores the need for enhanced feature 

engineering or dimensionality reduction techniques to improve class separability. Techniques such as principal 

component analysis (PCA) or the inclusion of time-series features might address this limitation. 

4.3 SVM 

The Support Vector Machine (SVM) classifier achieved an overall accuracy of 75 percent in classifying badminton 

strokes. Table 4 provides the classification metrics, while Figure 5 illustrates the confusion matrix, highlighting strengths 

and weaknesses in stroke classification. The SVM model excelled in recognizing Backhand Drive, achieving near-perfect 

recall (0.98) and an F1-score of 0.91. This indicates the model’s ability to consistently identify this stroke, with minimal 

misclassification. Similarly, Backhand Clear showed strong results, with a recall of 0.81 and an F1-score of 0.76, despite 

a 12 per-cent misclassification rate as Forehand Smash. 

Table 4. Classification results for badminton strokes using SVM model 

Stroke Precision Recall F1-Score 

Backhand 

Clear 

0.72 0.81 0.76 

Backhand 

Drive 

0.84 0.98 0.91 

Forehand 

Clear 

0.85 0.43 0.57 

Forehand 

Drive 

0.77 0.79 0.78 

Forehand 

Smash 

0.58 0.70 0.63 

Model 

Accuracy 

0.75 

 

 

Figure 5. Confusion matrix of SVM model in classifying badminton strokes 

For Forehand Clear, performance was less satisfactory, with a recall of only 0.43 and significant misclassifications 

into Forehand Drive (14 percent) and Forehand Smash (31 percent). These misclassifications suggest overlapping features 

between these strokes, particularly in execution speed or angle. Forehand Smash, while achieving a recall of 0.70, also 



Mohd Isa et al. │ Mekatronika │ Volume 7, Issue 1 (2025) 

 

journal.ump.edu.my/mekatronika  8 

suffered from misclassification, with 14 percent of instances incorrectly labelled as Forehand Drive. Forehand Drive 

demonstrated balanced metrics (recall 0.79, F1-score 0.78), though 11 percent of its instances were misclassified as 

Forehand Smash, reflecting moderate ambiguity between these strokes. 

The confusion matrix shows the SVM model excels at distinguishing Backhand Drive and Backhand Clear but 

struggles with overlapping strokes like Forehand Clear and Forehand Smash. Misclassification patterns suggest 

improvements through feature engineering, such as including temporal, angular velocity, or biomechanical features. 

Notably, Forehand Clear misclassified as Forehand Smash (31 percent) highlights the need for better differentiation in 

motion data. Similarly, Forehand Smash’s overlap with Forehand Drive points to execution speed or trajectory similarities 

the model cannot resolve. While SVM shows promise, it requires more advanced models, ensemble approaches, and a 

larger dataset for better accuracy and stroke differentiation. 

4.4 Performance Comparison between Models 

This section compares the classification performance of the Logistic Regression, k-NN, and SVM models. The key 

metrics for comparison include precision, recall, F1-score, and overall accuracy. The results in Table 5 indicates that k-

NN and SVM performed similarly, achieving 75% accuracy, while Logistic Regression lagged behind at 67%. Across all 

models, Backhand Drive was the most accurately classified stroke, while Forehand Smash consistently exhibited the 

lowest performance. The misclassification of forehand strokes suggests the need for advanced feature selection and deep 

learning techniques to improve class separability. Future work should consider ensemble methods or hybrid models to 

enhance recognition accuracy further. 

Table 5. Performance comparison of classification models 

Model 
Accuracy 

(%) 
Best Stroke Worst Stroke 

Logistic 

Regression 

67 Backhand Drive 

(F1: 0.88) 

Forehand Smash 

(F1: 0.37) 

k-NN 75 Backhand Drive 

(F1: 0.91) 

Forehand Smash 

(F1: 0.43) 

SVM 75 Backhand Drive 

(F1: 0.91) 

Forehand Clear (F1: 

0.57) 

5. CONCLUSION 

This study evaluated machine learning (ML) models for badminton stroke recognition using sensor data from an IMU-

embedded racket. The k-NN and SVM models achieved the best performance, both with 75% accuracy, outperforming 

Logistic Regression 67%. The k-NN model excelled in classifying Backhand Drive, while Forehand strokes, particularly 

Forehand Smash, were misclassified across all models. These challenges underscore the need for improved feature 

engineering and more advanced models. Overall, the study highlights the potential of ML in automating stroke analysis 

and providing valuable feedback for player training. Future research should focus on refining feature selection, exploring 

deep learning, and expanding the dataset to im-prove classification accuracy and model adaptability. 
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