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ABSTRACT - The escalation of the global population and the depletion of natural resources 
have propelled the evolution of smart agriculture and precision farming, underpinned by 
sensor-based crop monitoring and control systems, which are anticipated to revolutionize the 
agricultural sector. Notably, prevalent smart agriculture systems predominantly emphasize 
either IoT components for data monitoring and control or machine learning components for 
data analysis. Consequently, this project endeavours to develop a system that seamlessly 
integrates both IoT and machine learning components, culminating in an advanced system 
capable of real-time crop monitoring and growth prediction. Collaborating with the Urban 
Farming Farm under the auspices of the Kulliyyah of Economics and Management Science, 
an IoT system comprising soil moisture, temperature, and humidity sensors, alongside an 
actuator, is devised to facilitate data acquisition and required intervention specifically for Okra 
Fruit during the pre-harvesting stage. Subsequently, four distinct algorithms are trained with 
the collected dataset to ascertain the most optimal algorithm for predicting crop growth and 
harvesting time, resulting in the selection of the Random Forest Regression model, which 
attains the highest model score of 86%. Upon its integration into the comprehensive system 
for monitoring new data and predicting fruit growth, the model achieves an impressive 98% 
accuracy score. Future endeavours for this project aim to enhance its applicability and 
predictive capabilities through the incorporation of diverse datasets from various plant species, 
the expansion of crop predictions to encompass the entire growth cycle, the integration of 
additional sensors, and the enhancement of the system's scalability to cover larger areas. 
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1.0 INTRODUCTION 
The projected global population surge to nearly 10 billion by 2050 heightens the urgency for improving agricultural 

output to ensure food security and alleviate hunger [1]. Tackling the multifaceted challenges associated with food 
production, agricultural land expansion, and greenhouse gas emissions is important to enable UN Sustainability Goals 
2030 to be achieved. Keating et al. [2] identified three important remedies – reducing food demand, increasing food 
production, and optimising capacity of food supply chain. Notably, smart farming and precision agriculture emerge as 
one of the avenues within these strategies [3], [4], offering substantial promise in increasing food production while 
ensuring the sustained capacity of food systems. Leveraging a suite of technologies such as sensors [5], [6], drones [7], 
[8], and data analytics [9], smart farming are able to optimize resource utilization, refines farm management, and mitigates 
environmental impact [10], [11]. 

The integration of emerging technologies, including the Internet of Things (IoT) and machine learning, presents 
considerable potential for precision agriculture and smart farming [12], [13]. IoT sensors enable real-time monitoring and 
automation of farming operations, empowering farmers to make informed decisions which is grounded in agricultural 
data housed in the cloud [14]. Complementing this, machine learning algorithms improves decision-making processes by 
processing real-time data captured from IoT sensors, contributing to more efficient and sustainable farming practices [15]. 
The amalgamation of smart farming, precision agriculture, IoT, and machine learning [16]are therefore able to address 
the intricate challenges of food production and sustainability. This, ultimately foster a balanced future characterized by 
sustainable diets, minimized waste, biodiversity conservation, and resilient food systems. 

2.0 METHODS AND MATERIAL 
In this investigation conducted at the Urban Farming Farm under the purview of the Faculty of Economics and 

Management Science project, the methodology is centred on elucidating the pre-harvest dynamics of Okra fruit plant 
growth, specifically focusing on the fruit's length. Okra fruit also known as Abelmoschus esculentus, is a green, elongated 
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fruit with a tapering shape. The fruit typically grows to be between 10–25 cm in length and belongs to the Malvaceae 
family. It is commonly used in cooking and has potential health benefits, including antidiabetic properties [17]. 

The approach integrates sensor-derived readings and manual measurements using callipers at hourly intervals to 
ensure a comprehensive and precise depiction of fruit development. The adoption of a high-frequency data collection 
regimen affords a nuanced insight into growth dynamics previously studied by Dantas et al. [17]. Further, the sensor 
technology enables facilitation of an uninterrupted surveillance of environmental parameters enabling better prediction 
of plant growth. The emphasis on fruit length as a key metric offers valuable inferences pertaining to plant vigour, 
maturity, and prospective yield. The dataset procured will undergo a machine learning process for exhaustive data 
scrutiny, with the objective of deploying predictive modelling techniques capable of unravelling crop growth patterns and 
predict optimal harvesting periods. This data-driven methodology resonates with the overarching ambition of augmenting 
agricultural efficacy and output, thereby enriching the sustainable progression of urban farming methodologies. 

2.1 System Architecture 

The system architecture of the smart agriculture system shown in Figure 1 encompasses a fusion of hardware and 
software components. The schematic represents the integration of technology aimed at fostering efficient and sustainable 
farming practices through the utilization of sensors and actuators, data transfer, communication network via the internet, 
cloud services, and machine learning to predict crops growth.  

 

Figure 1. System Architecture 

2.2 Instrument for Data Collection 

The data collection methodology in smart agriculture harnesses sensor technology to monitor and regulate farm 
parameters. However, to address the constraints inherent in sensor-based data collection, a dual approach is adopted, 
encompassing sensor-based measurements for environmental parameters and manual measurements for fruit dimensions. 
The placement of the instruments (left) and the system setup (right) could be seen in Figure 2, with choice of system 
hardware implementation shown in Figure 3.  
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Figure 2. Placement of Instruments for Data Collection (Left) and System Setup for Data Collection (Right) 

In the context of sensor-based measurements, sensors designed to gauge environmental variables such as temperature 
and humidity sensor using DHT 11 which have a temperature range of 0oC – 50oC and 20% - 90% respectively is used. 
In addition, soil moisture SG00325 is utilised to identify the dryness of the soil. Rain sensor module SN-RAIN-MOD and 
other sensors are strategically placed within the farming environment to enable real-time data acquisition. These sensors 
are interfaced with microcontrollers, notably the ESP32 [18], which undertake the collection and transmission of sensor 
readings as shown below in the hardware implementation. The amassed data is subsequently synchronized with both the 
Adafruit IO and Google Sheet platforms, enhancing accessibility and flexibility. This integration facilitates the 
exportation of data into diverse file formats, thereby laying the groundwork for comprehensive analysis through the 
application of data analytics and machine learning methodologies. The procedural workflow is summarised in the 
accompanying flowchart shown in Figure. 4. Conversely, manual measurements entail the periodic assessment of fruit 
length using vernier callipers at hourly intervals as shown in Figure. 5. The recorded data are stored in Google Sheet with 
sensor-derived data.  

 

Figure 3. System Hardware Implementation 

 

 2.3 Data Collection 

The prediction of fruit growth is facilitated through the deployment of a machine learning algorithm, leveraging 
historical data patterns for accurate model construction, as depicted in Figure 6. However, prior to commencing any data 
analysis, the collected dataset necessitates meticulous cleaning and pre-processing. For instance, circumstances may arise 
where the periodic measurement of fruit length at hourly intervals becomes impracticable, particularly during nocturnal 
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hours due to human constraints. Under such circumstances, any absent data points are extrapolated linearly or through 
polynomial interpolation, as illustrated in Table 1. 

In order to ensure the efficacy of the machine learning algorithm in generating precise forecasts, an ample historical 
training dataset is needed. Accordingly, a growth dataset as shown in Table 2 is incorporated to furnish additional input 
for the machine learning algorithm. The implementation of the machine learning algorithm is executed through the 
utilization of the widely recognized Scikit-Learn (SKL) library in Python [19]. 

Each variable within the dataset undergoes comprehensive analysis to ascertain its impact and significance for training 
within the model. The initial step entails the partitioning of the dataset into a training set (X-Train and Y-Train) and a 
testing set (X-Test and Y-Test), as delineated in Table 3, where X-Train and X-Test is represented by light blue and dark 
blue respectively and Y-Train and Y-Test is represented by light green and dark green respectively. This partitioning is 
accomplished through the employment of the train_test_split() function from the SKL library. It is noteworthy that distinct 
machine learning models exhibit varying performances contingent upon the specific scenario and data types [20]. To 
identify the most suitable model for the given scenario, the library from SKL model.score() is employed to compute the 
score for the different machine learning models. Subsequently, only the model with the highest score is selected for 
training and thus testing within the system.  

 

Figure 4. Sensor Based Data Collection 
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Figure 5. Measuring Okra Fruit Length Using a Calliper 

 
Figure 6. Machine Learning Process 

 

Table 1. Length Datasets containing a) Missing Values b) Extrapolated/Interpolated Values 

Index Temp 
(°C) 

Humidity 
(%) 

Soil 
Moisture 
(%) 

Length 

0 28.0 86 37.14 12.75 
1 29.3 85 39.07 NaN 
2 30.3 87 38.22 NaN 
3 60.1 30 40.00 NaN 
4 45.8 67 39.98 NaN 
... ... ... ... ... 

147 48.3 49 31.40 NaN 
148 60.1 27 34.63 NaN 
149 55.0 45 36.00 119.10 
150 49.8 49 34.51 NaN 
151 38.0 68 34.53 NaN 

 

Index Temp 
(°C) 

Humidity 
(%) 

Soil 
Moisture 
(%) 

Length 

0 28.0 86 37.14 12.75 
1 29.3 85 39.07 12.76 
2 30.3 87 38.22 12.77 
3 60.1 30 40.00 12.78 
4 45.8 67 39.98 12.79 
... ... ... ... ... 

147 48.3 49 31.40 116.42 
148 60.1 27 34.63 117.76 
149 55.0 45 36.00 119.10 
150 49.8 49 34.51 119.10 
151 38.0 68 34.53 119.10 

 

(a) (b) 
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Table 2. Datasets with Growth Data 

Index Date Temp 
(°C) 

Humidity 
(%) 

Soil 
Moisture 
(%) 

Length Growth 

0 
Wednesday, 
December 20, 2023 - 
09:50:07 

28.0 86 37.14 12.75 0.00 

1 
Wednesday, 
December 20, 2023 - 
10:50:07 

29.3 85 39.07 12.76 0.01 

2 
Wednesday, 
December 20, 2023 - 
11:50:07 

30.3 87 38.22 12.77 0.01 

3 
Wednesday, 
December 20, 2023 - 
12:50:06 

60.1 30 40.00 12.78 0.01 

4 
Wednesday, 
December 20, 2023 - 
13:50:06 

45.8 67 39.98 12.79 0.01 

5 
Wednesday, 
December 20, 2023 - 
14:50:06 

44.9 66 39.41 12.80 0.01 

6 
Wednesday, 
December 20, 2023 - 
15:50:06 

46.2 66 42.17 12.95 0.15 

7 
Wednesday, 
December 20, 2023 - 
16:50:06 

41.1 72 39.17 13.10 0.15 

8 
Wednesday, 
December 20, 2023 - 
17:50:06 

41.1 75 37.90 13.25 0.15 

9 
Wednesday, 
December 20, 2023 - 
18:50:06 

33.3 86 42.05 13.40 0.15 
 

Upon the utilization of the training dataset for model training, a test dataset is employed to evaluate the forecast 
accuracy of the model. The model's predictions are generated using the model.predict() function from the SKL library.  

The comprehensive integration process between machine learning and IoT Adafruit IO is encapsulated in the flowchart 
depicted in Figure 7. The integration commences with the acquisition of parameters from Adafruit feeds, encompassing 
soil moisture, humidity, temperature, and fruit length. Following the reception of the complete dataset, the trained machine 
learning model predicts the current fruit growth based on the received parameters. Simultaneously, an analysis of the 
received data is conducted to ascertain its adherence to specific ranges. In the event of data falling outside the established 
ranges, a text notification is dispatched to the IoT dashboard to inform the users. Pertaining to the forecasted growth 
anticipated by the model, the data is utilized to calculate the current fruit length and ascertain the optimal harvesting time. 
The calculated harvesting time is prominently displayed in the dashboard's text box. Furthermore, all the data is 
automatically stored in a .csv format for subsequent analysis and the refinement of system predictions. Notably, a 60-
minute timer is employed to facilitate continuous and automated data retrieval from Adafruit IO, fruit growth prediction, 
and subsequent update within the Adafruit IO platform. 

 

Table 3. Splitting Data into Train and Test 

Index Date Temp 
(°C) 

Humidity 
(%) 

Soil 
Moisture 
(%) 

Length Growth 

0 
Wednesday, 
December 20, 2023 - 
09:50:07 

28.0 86 37.14 12.75 0.00 

1 
Wednesday, 
December 20, 2023 - 
10:50:07 

29.3 85 39.07 12.76 0.01 
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2 
Wednesday, 
December 20, 2023 - 
11:50:07 

30.3 87 38.22 12.77 0.01 

3 
Wednesday, 
December 20, 2023 - 
12:50:06 

60.1 30 40.00 12.78 0.01 

4 
Wednesday, 
December 20, 2023 - 
13:50:06 

45.8 67 39.98 12.79 0.01 

5 
Wednesday, 
December 20, 2023 - 
14:50:06 

44.9 66 39.41 12.80 0.01 

6 
Wednesday, 
December 20, 2023 - 
15:50:06 

46.2 66 42.17 12.95 0.15 

7 
Wednesday, 
December 20, 2023 - 
16:50:06 

41.1 72 39.17 13.10 0.15 

8 
Wednesday, 
December 20, 2023 - 
17:50:06 

41.1 75 37.90 13.25 0.15 

9 
Wednesday, 
December 20, 2023 - 
18:50:06 

33.3 86 42.05 13.40 0.15 
 

 

 
Figure 7. Flowchart integration of machine learning model and IoT platform 
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2.4 Accuracy of Model 

The assessment of the machine learning system's proficiency in predicting fruit length entails the utilization of 
fundamental regression metrics, including the Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean 
Squared Error (RMSE), represented by Equation (1)-(3) correspondingly. Additionally, the Coefficient of Determination 
(R-squared) is employed to gauge the congruence between the predicted and actual data. Substantially lower MAE, MSE, 
and RMSE values are indicative of superior model performance, while a higher R-squared value signifies a heightened 
alignment of the model with the actual data. 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
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 (2) 

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = √𝑀𝑀𝑀𝑀𝑀𝑀 (3) 

3.0 RESULTS AND DISCUSSION 
This section delineates the outcomes of the project, encompassing the analysis of the collected sensor data, the findings 

derived from machine learning outputs, and the comprehensive evaluation of the system's performance. Furthermore, it 
engages in a discourse on the challenges and issues encountered during data monitoring and gathering, along with 
potential strategies to surmount these obstacles. 

3.1 IoT System Output 

The discussion of results in our IoT system involves analysis of the outcomes, particularly focusing on data accuracy 
and reliability, data insight, energy consumption and efficiency.  

Ensuring accurate and reliable data from our deployed sensors is crucial for the success of the smart farming project. 
Three key sensors - the soil moisture sensor, DHT11 for temperature and humidity, and a rain sensor are utilised. To 
enable good prediction, soil moisture sensor needs to be regular recalibrated through diverse field tests to confirm its 
consistency in performance whilst considering external factors for optimum irrigation guidance. Similarly, the DHT11 
sensor, used for temperature and humidity is tested and has demonstrated accuracy through evaluation against certified 
instruments. Rain sensor deployed to detect rain fall for every hour. However, during the data acquisition, the rain sensor 
value does not fully able to representant current weather condition. Thus, in the training dataset, the rain sensor data is 
removed to preserve the performance of the model. Implementation of shielding mechanisms and regular checks ensure 
reliable microclimate data. Adafruit dashboard shown in Figure 8 provides real-time data visualization and insight with 
line graph including growth data, temperature, humidity, and soil moisture allowing users to analyse the trend and take 
necessary steps such as to water plant to increase yield when data parameters are out of desired range. Two prominent 
features of the system are a real-time notification for out of parameters and predicted harvest time. These two allows 
farmers to plan and optimise their crop harvest and receive an alert for an effective maintenance.  

The dashboard effectively enhances user decision-making and proactive management in the IoT system, by providing 
comprehensive data visualization, real-time monitoring, and predictive insights, facilitating a holistic understanding of 
crop conditions, thus enabling timely interventions for optimal agricultural practices. 

3.2 Energy Consumption 

A 20,000 mAh power bank operated the IoT system, including the ESP32 microprocessor, sensors, and actuator. 
Continuous monitoring revealed the power bank could sustain the system for approximately 50 hours which equate to 
approximate energy consumption of 2 watts per hour.  
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Figure 8 .Adafruit IO dashboard 

3.3 Data Analytics and Relationship of Different Datasets 

In Figure 9, a series of scatter plots is presented to illuminate the pairwise relationships across a dataset, specifically 
focusing on the analysis of variables. Notably, the dataset under scrutiny pertains to the Okra fruit, with "Fruit 1" and 
"Fruit 2" denoting the same fruit type from two distinct plants at varying time points. It is discerned from Figure 9 that 
the data distribution patterns of temperature, humidity, and soil moisture exhibit remarkable similarity across both fruits. 
However, a substantial disparity is observed in the data distribution patterns of length and fruit growth between the two 
fruits, signifying that environmental parameters alone do not wholly account for the variations in fruit length and growth. 
This observation suggests the existence of additional parameters influencing fruit growth, with the current fruit length or 
size posited as a potential influential factor. 

 
Figure 9. Pair plot the relationship between all variables. 
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To probe the relationship between fruit growth and length, a scatterplot graph of growth versus length is depicted in 
Figure 10. The analysis reveals that during the initial stages of fruit growth, characterized by a fruit length of 
approximately below 35 mm, the growth rate ranges from 0.01 mm to 0.6 mm per hour. In contrast, during the subsequent 
phase, encompassing the fruit's maturation until it reaches harvestable status, the growth rate escalates to between 0.6 mm 
and 1.75 mm per hour. This discernible pattern underscores the influence of fruit length on its growth rate. 

 
Figure 10. Scatterplot graph growth vs length 

Consequently, the next phase of training data for the machine learning model involves the investigation of two distinct 
cases: 

• Case A: Exclusion of the "length" dataset from model training. 
• Case B: Inclusion of the "length" dataset in model training. 

The objective is to validate the aforementioned data analysis observation, specifically to ascertain whether the 
inclusion of fruit length in the features dataset enhances the accuracy of the model's predictions, thus substantiating the 
influence of fruit length on growth. 

3.4 Training Score for Different Regression Models 

In order to ascertain the impact of incorporating the length dataset into the training features (X Train) on the model's 
performance, the dataset is subjected to training utilizing four distinct machine learning regression models: Random 
Forest Regressor (RF) [21], Decision Tree Regressor (DT) [22], K-Nearest Neighbours Regressor (KNN) [23], and 
Support Vector Machine (SVM) [24]. The outcomes of the different model scores are depicted in Figure 12. 

 
Figure 11. Comparison of machine learning models score toward both cases. 

Notably, the scores of all models in case B consistently surpass those in case A. This observation leads to the inference 
that the inclusion of the "Length" dataset within the training dataset significantly enhances the system's performance. 
Furthermore, across all models in both cases, the Random Forest Regression model consistently exhibits the highest score. 
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Consequently, the Random Forest Regression model is deemed as the optimal choice for utilization within the smart 
agriculture system, facilitating the prediction of crop yield growth and the optimization of crop management practices. 

3.4 System Performance 

The one-to-one comparison between the system's predicted fruit length and the actual fruit length which includes 
extrapolated values is visually depicted in Figure 12. Figure 12 reveal a consistent growth trend in the predicted by 
machine leaning and actual length with extrapolated values, albeit with a minor tendency for the system to forecast slightly 
lower lengths. Although a small error is evident, the results remain remarkable and acceptable, empowering farmers to 
anticipate and plan harvesting times, thereby fostering enhanced farm management practices. 

The predictive performance against actual growth measurements is further evaluated through key error metrics, 
including Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE), as illustrated 
in Figure 13. The MAE of 0.1537 signifies a modest average deviation of approximately 0.1537 mm in the model's 
predictions, aligning with the 0.01 mm to 2 mm per hour fruit growth range. Additionally, the MSE of 0.0528 and RMSE 
of 0.2298 highlight consistent and accurate predictions. Furthermore, the system's performance and accuracy with new 
data are gauged through the Coefficient of Determination (R-squared), as depicted in Figure 14. The substantial R-squared 
value of 0.98 underscores the system's precision in predicting new data, although the fortification of prediction robustness 
may necessitate additional data, considering the variability inherent in plant biological behaviours. In sum, the low error 
values and high score values substantiate the model's proficiency in predicting fruit growth. 

 

 
Figure 12. Comparison between actual length and predicted length. 

 
Figure 13. Screenshot of the error metric calculated by the system 
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Figure 14 System accuracy towards new data collection 

The integration of IoT technologies and machine learning in smart agriculture projects presents substantial potential 
for enhancing efficiency and improving yields. However, challenges manifest in the form of inaccurate and incomplete 
data, particularly in manual data acquisition utilizing less precise tools such as callipers. This underscores the imperative 
need for higher precision measurement tools, such as real-time calibrated augmented reality measurement, to elevate the 
accuracy of datasets. Reliability concerns arise from sensor malfunctions and maintenance issues, as exemplified by errors 
in soil moisture readings during data collection. Considerations related to cost are pivotal in designing an economically 
viable smart farming system, necessitating meticulous selection of microprocessors, sensors, and actuators. Furthermore, 
the deployment of hardware in open spaces mandates weather adaptability, addressed through the enclosure of 
components in a closed box. Power supply challenges necessitate the use of power banks, while internet connectivity 
demands continuous monitoring to avert interruptions in data acquisition. Lastly, the intricacies of crop growth influenced 
by biological factors underscore the significance of diverse and ample training data for precise machine learning 
predictions, prompting a focus on the pre-harvesting stage for data collection. A comprehensive understanding of these 
challenges is indispensable for the successful integration of advanced technologies into sustainable agricultural practices. 

4.0 CONCLUSION 
The smart agriculture system developed in this project has showcased remarkable accuracy and efficacy in predicting 

urban fruit growth, as evidenced by a Mean Absolute Error (MAE) of 0.1537 mm and low Mean Squared Error (MSE) 
and Root Mean Squared Error (RMSE) values. The consistent superiority of the Random Forest Regression model, 
culminating in a high R-Squared value of 0.98, underscores the system's predictive prowess. The seamless real-time 
integration of predictive insights into the Adafruit dashboard augments its practicality for farmers, despite encountering 
challenges such as inaccurate data and sensor maintenance. The successful mitigation of these obstacles substantiates the 
system's dependability. Notably, the project has met its objectives of furnishing an economical and data-centric solution 
for optimizing urban farming practices, marking a significant stride in agricultural technology. 

Future endeavours for this smart agriculture project entail the assimilation of diverse datasets encompassing various 
plant species, alongside the expansion of crop predictions to encompass the entire growth cycle. Furthermore, the 
integration of additional sensors to monitor parameters such as soil pH, nitrogen, phosphorus, potassium, and rainfall, 
coupled with scalability enhancements for larger areas, reflects a commitment to bolstering the system's adaptability and 
predictive capabilities in precision farming. 
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