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INTRODUCTION 

The reliability of bus services will have a huge effect on service providers and current and future customers. 

Passengers are influenced by inadequate infrastructure expectations of service efficiency and bus service relative to other 

means of choice, while transit systems are affected by lack of riding and sales and increased costs of delivering extra 

service to cover for weak service operations [1]. Travel time reliability can take several quantitative steps, all of which 

vary to some degree in the details they contain when determining the reliability of the path. Bus travel time calculation 

may allow transit operators to understand and enhance the efficiency of their services and draw more public transport 

users. 

Recent developments in automated vehicle location (AVL) systems based on the Global Positioning System (GPS) 

provided the transit industry and public transport companies with tools to track and coordinate the movement of their 

vehicles and maintain their fleet reliably and cost-effectively. The benefit of bus automated vehicle location (AVL) data 

is well known, ranging from passenger-facing applications that forecast bus arrival times to service-facing applications 

that track network performance and identify performance failures [2]. While these techniques are sufficient for 

comparatively limited datasets, they are typically not feasible to classify and derive useful findings from far larger datasets 

derived from AVL schemes. It is also important to collect and summarise the data in a manner that promotes efficient 

decision-making and helps to concentrate resources. 

In the bus industry, AVL systems have been used for many years but there has been no use of the historical data 

provided by these systems so far. The purpose of the data can be used in a wide range such as timetabling. As the AVL 

data is a historical archive of how the path currently operates on a day to day, this information can be used to locate 

locations along the route where buses continually struggle to follow the timetable or periods in the day where length gaps 

in service often occur [3]. A better schedule will then be drawn up and checked and it is easy to assess the effects of the 

adjustments to the schedule. The key role of the AVL system is typically to convey real-time information to route 

controllers about current bus positions to allow them to overcome more effectively with service disturbances. As this data 

provides a continuous record of the movement of the bus during the day it offers a valuable source of data from which 

bus speed can be collected.  

RELATED WORK 

The AVL data for the T224 bus given by RapidKL is the main dataset of this study. This chapter presents the data of 

the RapidKL T224 bus AVL not only to remind the analyses below but also to put the data in the broad sense of human 

mobility science. Latest advances in automated vehicle positioning (AVL) technologies based on the Global Positioning 

System (GPS) have equipped the bus industry and public transport agencies with tools to track and coordinate the 

operation of their vehicles and maintain their fleet reliably and cost-effectively. There is a component of AVL Data which 

is the time when the vehicle hits the destination location or the location where the vehicle will be at a given point in time. 

ABSTRACT – Transit dependability is a measure of the quality of service provided by public 
transportation networks. The trip time distribution may represent the nature and pattern of travel 
time variability, and it is required in the reliability analysis. Predicting transit bus travel times along 
routes is essential in bus design and operation, particularly in metropolitan regions. Bus riders are 
more likely to trust a transportation system if journey times can be accurately anticipated within a 
given margin of error. Many studies have been conducted to better understand travel time 
distribution, however there are very few studies on heterogeneous traffic in emerging countries 
such as Malaysia. In this work, the Taguchi T- technique and linear regression scales were used 
to evaluate the journey time distribution of public bus route T224 utilising AVL data. To increase 
the accuracy of applications, a prediction mechanism should be developed. Finally, a formulation 
was constructed to test the influence of side roads on prediction accuracy, and it was discovered 
that the additional need in terms of location-based data had no discernible effect on prediction 
accuracy. This clearly proved that the suggested method based on vehicle tracking data is 

adequate for the contemplated use of bus trip time prediction. 
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RapidKL route T224, which connects LRT Dato Keramat to Desa Pandan, was selected in the current analysis. The 

study length of 7 km connects LRT Dato Keramat to Desa Pandan to LRT Dato Keramat, which includes 14 bus stops 

from 300 m to 1km. This route covers various types of urban roads with various characteristics of traffic, geometry, and 

land use. In the study, the weekdays and weekend data of October 2018 with service operating from 6.00 am to 11.00 pm 

was used. Details on the scheduled date, schedule ID, route ID, trip ID, latitude, longitude, and GPS time stamp used in 

the Automatic Vehicle Location Data were changed every 1 to 20 seconds. 

To estimate the arrival time of the bus, AVL data must be reduced and altered. The current position, current time, 

speed, direction and vehicle ID are all part of the AVL data. These raw data were used to extract the input data for 

predicting bus arrival time. 

The Taguchi's T-Method is a branch of the Mahalanobis Taguchi System (MTS) developed by the renowned Japanese 

Quality Guru Dr. Genichi Taguchi [4]. MTS was introduced in the 1980s, as a pattern information technology that aids 

the decision-making process by constructing a multivariate measurement scale using data analytic methods [5]. Taguchi's 

T-method (T-method) is a regression-driven predictive model developed by Genichi Taguchi as part of the Mahalanobis-

Taguchi System to forecast the future state or uncertain performance based on current or historical evidence[6]. The T-

method, like any regression-based approach, calculated and clarified the relationship between the response variable and 

the explanatory variable in the context of a statistical model to produce a reliable forecast. T-method is a comparatively 

recent method, with just a few academic works in the literature focusing on its implementation, contrast, and 

improvement. 

DATA ANALYSIS SIMULATED BY TAGUCHI T’METHOD 

Simulated Taguchi Method 

The T Method idea is used with the S/N Ratio in the T-Method estimate approach (SNR). The T-concept Method 

remains focused on three critical characteristics of SNR: uncertainty, adaptability, and linearity [7]. Taking into account 

the complex world, some value has been applied to the theory established. T-Method used the notion of reference-point 

proportional equation to build a regression that passes through the origin to make a graph. The unit and signal group are 

used to design and evaluate the forecasting model. For normalisation, the average value of the unit group is subtracted 

from each member of the signal group. 

Computation of the proportional coefficient (β) and SN ratio (η) is done to determine the items (parameters) that 

would be used for prediction and estimation. The T-Method computes the proportional coefficient (β) and the SN ratio 

(η) between the output (Mi) and item value. The proportional coefficient (β) and SN ratio (η) were computed item by item 

using normalised data (Xij) and normalised performance value (Mi). For each component, the SN ratio and proportional 

coefficient are calculated. If the SN ratio is negative, the sum would be considered zero. The integrated approximate 

output value for Signal Data is calculated item by item using the proportional coefficient β and SN ratio η. The larger an 

item's SN ratio, the greater its contribution to general performance calculation. The following formula can be used to 

calculate the integrated approximation performance value Mi: 

 (1) 

 

RESULTS AND DISCUSSION 

Weekday and Weekend Data 

The analysis described below was performed by combining automatic vehicle location (AVL) data of T224 bus lines 

in the area of LRT Dato Keramat to Desa Pandan. To begin the study, it is necessary to determine peak and off-peak 

hours of the day. Figure 1 plots the observed travel times in relation to the travel time of day on working days from 

Monday to Friday. The weekday data has been sorted by daily travel time which is 30 minutes of the travel time. For 

example, 6.00 a.m to 6.30 a.m a day for 1 month. It was discovered that the variability in the weekday non-peak period 

is greater than the variability in the weekday peak period, and the weekday peak period has the least fluctuation in arrival 

time among all periods. 

Figure 2 plots the observed travel times concerning the travel time of the day during the weekend day (Saturday and 

Sunday). Nonetheless, the weekend statistics reveal that the weight of the significance was not great, implying that there 

is a lower likelihood of traffic congestion happening on weekends. As can be observed, travel time on weekends is not 

significantly longer than travel time on weekdays. Weekend vehicle traffic appears to be lower throughout all peak hours 

as compared to weekdays. In particular, for the investigated bus lines, the variance is higher in the afternoon peak hour 

than in the morning and evening. Based on the figure, the weekend peak period was in the middle of the graph and it was 

observed to have high variability compared to the other time data. The graph shows the time travel for non-stationary data 

varies with time and is not constant. 
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Figure 1. Weekday Data 

 

 

 Figure 2. Weekend Data 

 

Morning peak, Evening peak and Non-peak data 

The collected data were analysed to comprehend the fluctuation in travel time within a day of the morning peak. The 

morning peak hour time was chosen for testing and verifying the simulation model since it has the largest passenger 

demand and the influence of strategies on service dependability would be greatest. Figure 3 illustrates the travel time over 

bus ID of the day. The data were collected from 6.30 a.m until 10.00 a.m. The data was derived using the average journey 

time of bus rides to approximate typical travel times. These average travel times could be calculated separately for periods 

and bus trips. According to the figure below, the maximum travel time relative to other times may be seen in the center 

of this graph. This is because there is a possibility of traffic jams on the road. After all, that time is peak hour. 
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Figure 3. Morning Peak Data 

 

The obtained data were examined in order to understand the variation in travel time within a day of the evening peak. 

The evening peak hour was chosen for testing and evaluating the simulation model because it has the highest passenger 

demand and the largest impact of tactics on service reliability. Figure 4 depicts the day's journey time over bus ID. The 

information was gathered between 5.00 p.m and 8.00 p.m. The data was derived using the average journey time of bus 

rides to approximate typical travel times. These average journey times might be computed individually for different 

periods and bus trips. According to the graphic below, the longest journey time relative to other periods may be seen in 

the middle of the graph. This is because there is a chance of traffic congestion on the road. 

 

 

Figure 4. Evening Peak Data 

 

The obtained data were analysed to better understand the variation in travel time during a day of non-peak. The non-

peak hour was chosen for testing and assessing the simulation model because it has the highest passenger demand and 

hence has the greatest influence on service reliability. Figure 5 depicts the day's journey time over bus ID. The information 

was gathered the time other than morning and evening peaks. To approximate normal travel times, the data was obtained 

using the average journey time of bus journeys. These average journey times might be calculated separately for various 

dates and bus rides. 
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Figure 5. Non-Peak Data 

 
Travel Time Pattern Analysis 

Multilinear models of regression are developed in this area. The input variables should not be interrelated in the 

development of regression models. In this study, the input variables were the average traveling duration and average 

speed. Recognizing that external influences or other variables might change the time of the bus arrival. In such a scenario 

the start time, with input or independently determining variables like speed, road conditions, and other potential variables 

is calculated using a mathematical formula. 

After the development of the model, it is necessary to estimate the performance in terms of the accuracy of the data.  

Figures 5 and 6 show the comparison between data analysis in the morning and evening. The data analysis trip time was 

compared to check the validity of the models. Figures 5 and 6 show the scatter plots of models for the testing phase. To 

check the performance of the developed model two measures of effectiveness were used that is MAE (Mean Absolute 

Error), and 𝑅2 (coefficient of correlation). MAE has defined the sum of absolute differences between our target and 

predicted variables. 

 

 

Figure 5. Regression of Morning Peak 
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Figure 6. Regression of Evening Peak 

 

Table 1. Result of Mean Absolute Error (MAE) and Coefficient of Correlation (𝑅2) 

Peak Hour 
Data Training 

Morning  𝑅2 =   0.3407 
MAE = 0.0036 

Evening 𝑅2 = 0.1543 

MAE: 0.0091 

 

 Table 1 displays the MAE and 𝑅2 for both morning and evening data training models. The MAE and 𝑅2  value 

is obtained from the T-method by using Matlab. The R squared value ranges between 0 and 1, with 0 indicating that the 

model does not match the given data and 1 indicating that the model fits the data correctly. The 𝑅2 on the evening data is 

15% of the variance while the one on the morning data is 34%. As we can see, the r square is low, but data with high 

variability might have a strong trend. The trend demonstrates that even when data points are further away from the 

regression line, the predictor variable still gives information about the answer. 

 The MAE is the total of the absolute differences between our goal and the expected variables. The result of MAE 

is to measure, without considering direction, the mean size of the errors in a data collection and the value can be range 

from 0 to ∞. The lower the MSE the higher the accuracy of prediction as there would be an excellent match between the 

actual and predicted data set. It returns a linear number that equalises the weighted individual differences. The model's 

performance improves as the value decreases. 

CONCLUSION 

In this study data from buses have been gathered to do pattern analysis to find the most important travel times 

for every day using the T-method. The study examined data patterns of public transit bus journey time under diverse 

traffic circumstances by the weekend, weekday, morning peak, evening peak, and non-peak clustering. The developed T-

method and regression model were time discretized and captured the change in trip time in a subsection over time. The 

MAE (Mean Absolute Error) values for the morning and evening peaks were 0.0036 and 0.0091, respectively. The 𝑅2 

value is 34% in the morning and 15% in the evening. The absolute error is defined as the absolute value of the difference 

between the projected and actual values. 
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