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ABSTRACT 

 

This paper reviews the previous work carried on pool boiling heat transfer during heating 

of various liquids and commodities categorized as refrigerants and dielectric fluids, pure 

liquids, nanofluids, hydrocarbons and additive mixtures, as well as natural and synthetic 

colloidal solutions. Nucleate pool boiling is an efficient and effective method of boiling 

because high heat fluxes are possible with moderate temperature differences. It is 

characterized by the growth of bubbles on a heated surface. It occurs during boiling of 

liquids for excess temperature ranging from 5 to 30 °C in various processes related to 

high vaporization of liquid for specific purposes like sugarcane juice heating for jaggery 

making, milk heating for khoa making, steam generation, cooling of electronic 

equipments, refrigeration and etcetera. In this review paper, pool boiling method during 

heating of liquids for specific purpose is depicted. It is inferred that enhancement in pool 

boiling heat transfer is a challenging and complex task. Also, recent research and use of 

various correlations for natural convection pool boiling is reviewed.  

 

Keywords: Pool boiling; nucleate boiling; Rohsenow correlation; heating of liquids; pool 

boiling correlations.  

  

INTRODUCTION 

 

Boiling is an effective and efficient mode of heat transfer which is used for the transfer 

of heat for various heating purposes [1]. Many researches have been done since the 1930’s 

to analyze the boiling process and its characteristics [2, 3]. Rohsenow (1952) proposed 

correlations for heat flux and heat transfer coefficient for various liquids [4] rosenow. 

Mostinski, Kutateladze, Labantsov, Kruzhilin, Cooper, Gorenflo, Stephan & Abdelsalam 

and many other eminent researchers proposed various pool boiling heat transfer 

correlations for different liquids [5]. Although a lot of research is being carried out on the 

mechanism of pool boiling, it is not yet accurately understood. Nonlinear mutual 

interaction between numbers of sub-processes makes the boiling phenomena more 

complex to understand [6]. The different boiling regimes based on the excess temperature 

are nucleate boiling, transition boiling, and film boiling [7, 8]. 

Nucleate boiling is characterized by the growth of bubbles on a heated surface. 

The bubbles rise from discrete points on a surface, whose temperature is slightly above 

the liquid’s saturation temperature [9]. Transition boiling (or unstable boiling)s occurs at 

surface temperature between the maximum attainable temperature in nucleate boiling and 

the minimum attainable temperature in film boiling. When the heating surface 

temperature becomes significantly hotter (above 100 °C), film boiling takes place, where 
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a thin layer of vapor is formed that acts as insulation and results in reduced heat transfer 

[10, 11]. Critical heat flux leads to a drastic rise in heater surface temperature [9, 12, 13]. 

It is used in various heat exchange systems and in cooling of high-energy–density 

electronic components [14-16]. Rohsenow [4] proposed the following correlation for pool 

boiling heat transfer. 

 

   32/1" )]Pr/([]/)([
n

lfgsfplvlfgl hCTCghq         (1) 

 

In this review paper, the potential of pool boiling method for heating of liquids 

for specific purposes has been depicted by considering various researches conducted on 

pool boiling by many eminent researchers worldwide. Also, recent research and use of 

various correlations for natural convection pool boiling is reviewed. Various applications, 

advantages, disadvantages, and future research directions of pool boiling are also 

depicted. Earlier reviews on boiling are summarized in Table 1. 

 

Table 1. Reviews on pool boiling 

 

Authors Year Remarks 

[7] 1998 Advancement in predicting boiling heat fluxes 

[17] 2004 Pool boiling heat transfer under reduced gravity. 

[18] 2005 Influence of lubricants on HT of the refrigerants 

[19] 2008 Pool boiling heat transfer to HC and NH4 in refrigeration 

[20] 2011 Boiling HT performance of refrigerants mixtures 

[21] 2011 Boiling heat transfer enhancement with nanofluids 

[22] 2011 Statistical analysis of anomalous HT of nanofluids 

[23] 2011 Progress on nucleate boiling of nanofluids 

[24] 2011 Critical heat flux enhancement for nanofluids 

[25] 2012 Pool boiling experiment of multi-component mixtures 

[26] 2012 Numerical simulation of pool boiling fundamentals 

[27] 2013 Fundamental issues of critical heat flux 

 

RESEARCH CONDUCTED ON POOL BOILING 

 

Nucleate pool boiling is a significant method of heat transfer at high rate and thus is 

studied by various researchers. Various liquids and commodities categorized as 

refrigerants and dielectric fluids, pure liquids, nanofluids, hydrocarbons and additive 

mixtures, and natural and synthetic colloidal solutions used for carrying out the research 

on pool boiling for different purposes have been reviewed in the following sections. 
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Refrigerants and Dielectric Fluids 

The heat transfer coefficients with the method of regression analysis in natural convection 

boiling for water, hydrocarbons, cryogenic fluids, and refrigerants were predicted [28, 

29]. In addition, the effect of microgravity on pool boiling of Freon 12 and Freon 113 

were studied [30]. A correlation was also formulated for the calculation of heat flux 

density of refrigerants R-113 and R-114 in pool boiling at atmospheric pressure condition 

[8]. The effects of lubricant mass fraction, viscosity, and miscibility on the pool boiling 

heat transfer performance of 134a/lubricant mixture with the regression method for 12 

different mixtures were reported [31]. A numerical simulation model for heat transfer 

during boiling of FC-72 based on a numerical macro-layer model was presented [32]. 

Nucleate pool boiling experiments were performed for pure R-11 with a constant wall 

temperature condition [33]. Nucleate pool boiling of R-11 on cylindrical copper surfaces 

at reduced pressure was investigated [34]. The Rohsenow correlation was applied to 

nucleate boiling of halocarbon refrigerants over cylindrical surfaces and a correlation was 

developed [35].  

The relationship between the flow [29]behavior induced by ultrasonic vibration 

along with the consequent heat transfer enhancement in natural convection and pool 

boiling regimes for FC-72 was presented by [17]. The influence of thermo-physical 

properties on pool boiling heat transfer performance of refrigerants within the evaporator 

of a refrigeration system was experimentally investigated [36]. The influence of uniform 

DC electric field on nucleate boiling heat transfer of n-pentane, R-113, and R-123 on a 

horizontal copper surface was experimentally studied [37]. The pool boiling data for 

mixtures of R-22/ R-124 on plain tubes at reduced pressures was reported [38]. The pool 

boiling heat transfer of FC-72 at different pressures on a plain plate heater (15×15 mm2) 

was studied [39]. The pool boiling heat transfer performance of ammonia within the 

evaporator of a refrigeration unit with the use of existing correlations was assessed 

experimentally [40]. A correlation for heat transfer coefficient in the nucleate region 

based on the Buckingham π theorem for Geva-T and low finned tube was estimated for 

five liquids (R-113, n-pentane, ethanol, water, and R-11) boiling at atmospheric pressure 

[41].  

The effect of surface roughness on nucleate pool boiling of refrigerant R-113 on 

horizontal circular copper heating surfaces was experimentally investigated [42]. The 

effects of surface material (copper, brass, and aluminium) on nucleate boiling heat 

transfer of R-113 were reported [43]. The experimental investigation of nucleate pool 

boiling of R-134a and R-123 on enhanced smooth tubes of shell type heat exchangers was 

presented [44]. The boiling of distilled water, ethanol, R-113, and R-123 on heating 

surfaces covered with copper fibrous capillary porous structures used in heat pipes with 

porosity (40%, 70%, and 85%) was investigated experimentally and theoretically [45]. 

The effect of surface roughness on nucleate boiling heat transfer was studied [46]. Boiling 

performance of aqueous ammonium chloride as an additive using a nichrome wire heater 

was experimentally studied [47]. The nucleate boiling heat transfer of gas saturated FC-

72 on micro pin finned surface under microgravity was investigated [48]. The guidelines 

for the design of boiling test for FC-72 dielectric fluid on thin horizontal substrates having 

large number of artificial nucleation sites were presented [49]. The pool boiling curve of 

R-14 under 0.1 MPa pressure was experimentally studied [50]. 

Efficient boiling of the refrigerants is very necessary for the effective refrigeration 

system. Various researches are being carried out worldwide to explore different methods 

to enhance the boiling performance of refrigerants. Nucleate boiling under reduced 

gravity, varying pressures, and different boiling surface roughness has been used to 
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enhance boiling performance. Modified surfaces and increased nucleation sites on the 

boiling surface are reported to be effective technique to enhance the boiling 

characteristics of refrigerants. 

 

Pure Liquids 

Pure Liquids are not contaminated with other substances. Some of the pure liquids are 

pure water, ethanol, benzene, and etcetera. The boiling heat transfer data employed to 

water and electric heating methods used by various researchers were compared and 

discussed [51]. A numerical simulation model for heat transfer during boiling of water 

based on a numerical macro-layer model was presented [32]. The analysis of a sequence 

of temperature fields obtained from a nucleate pool boiling experiment was investigated 

[52]. Nucleate pool boiling of distilled water, benzene, and toluene from a horizontally 

laid plain stainless steel heating tube at atmospheric and sub-atmospheric pressures was 

experimentally studied [14]. The lateral merger of bubbles during nucleate pool boiling 

of water was numerically studied [53]. Saturated pool boiling curve for water on a 

temperature controlled thin copper strip using Couple Map Lattice method in non-linear 

spatio-temporal chaos dynamics was reproduced [54]. Experiments were conducted to 

investigate the efficiency of two distinctly different heat transfer enhancement methods 

using a thin vessel coating and an enhanced insulation structure for external reactor vessel 

cooling under severe accidental conditions [55]. Nucleate pool boiling characteristics 

during pool boiling of sub-cooled water on very small wires were studied [56]. The 

nucleate boiling of saturated water at high heat fluxes was numerically studied [57]. 

Nucleate pool boiling heat transfer coefficient for several pure liquids on a horizontal rod 

heater at atmospheric pressure was experimentally measured [6]. The boiling 

performance characteristics at atmospheric and sub-atmospheric pressures were 

experimentally investigated [58]. An experimental estimate of the heat flux for pool 

boiling of water and methanol at atmospheric pressure in a beaker with varying voltage 

using Rohsenow correlation with regression analysis was presented [59].  

A pool boiling experiment with demineralized water on rough surfaces of the 

tubes gave almost double heat transfer coefficient [60]. The investigation of nucleate 

boiling phenomena for distilled water at saturated as well as sub-cooled conditions was 

presented [61]. The potential of the acoustic emission in detection of bubbles to point out 

the transition zones during boiling process was examined [62]. Heat transfer 

characteristics of water through pool boiling over flat stainless steel plate heater using 

Stephen and Abdelsalam correlation (1980) by optimizing values of power index and 

coefficient was presented [63]. The effect of design parameters on pool boiling heat 

transfer for water on sintered tube surfaces was experimentally studied [64]. The pool 

boiling heat transfer performance of de-ionized water on horizontal plates sintered with 

copper fiber of various geometries under atmospheric pressure was experimentally 

investigated [65]. Heat transfer characteristics of water through pool boiling over 

horizontal stainless steel tube heater upto CHF were studied [66]. The pool boiling heat 

transfer enhancement by adding environment-friendly surfactants to pure water was 

experimentally described [67]. A study on heat transfer during pool boiling of water at 

atmospheric pressure over enhanced cylindrical micro-channel test surfaces was carried 

out [68]. A 2-D numerical simulation on nucleate boiling with help of VOSET method 

was presented [69]. Pool boiling experiments with synthetic diamond and silicon carbide 

heaters using water as the boiling liquid under atmospheric pressure was presented [70]. 

A model predicting the changes in bubble diameter during pool boiling of distilled water 

using neural networks in modeling with complicated nonlinear relations was presented 
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[71]. Critical heat flux triggering mechanism and dynamic behavior of dry areas in a 

horizontal pool boiling of saturated water on a transparent indium tin oxide heating 

surface was observed [72]. The boiling heat transfer behavior of distilled water on 

horizontal heating surface under atmospheric and sub atmospheric pressure was studied 

[73]. 

The effect of microlayer evaporation on heat transfer characteristics for water and 

ethanol by measuring microlayer thickness formed under a growing bubble was presented 

[74]. The pool boiling heat transfer characteristics of water on a stainless steel heater was 

experimentally analyzed [75]. The surface wettability and bubble dynamics during pool 

boiling of one-component fluids was investigated [76]. A heat transfer enhancement 

method during cooling of microelectronic elements by the application of ultrasonic fields 

using wires of different diameters in a pool of subcooled water was presented [77]. A 

relation for nucleate boiling heat transfer of water through the solid-liquid interface using 

experimental data was derived and was compared to the existing correlations [78]. A 

model was proposed to describe the accurate behavior of bubble departure during 

saturated pool boiling of pure water and ethanol under atmospheric pressure conditions 

[79]. The pool boiling heat transfer characteristics of water using different treated heating 

surfaces was studied [80]. Many industrial and commercial processes involve boiling of 

pure liquids like water, ethanol, Benzene, distilled water, and etcetera. Steam generations, 

cooling of electronic equipments and others. are the processes where the evaporation of 

pure liquids is done to absorb high amount of heat generated. Many researchers have 

discussed various modifications in heating surfaces and use of different pure liquids to 

enhance pool boiling performance by improving boiling characteristics, i.e. heat flux, 

critical heat flux, heat transfer coefficient, bubble growth and their departure. 

Performance of various heaters has been experimentally analyzed to achieve better heat 

transfer. 

 

Nanofluids 

The nanofluids are engineered colloidal suspension of nanoparticles in a base fluid. The 

nanoparticles are made of metals, oxides, carbides, and etcetera [81-83]. The boiling heat 

transfer characteristics of different alumina nano-particle concentrations with water on a 

horizontal flat smooth surface were studied [84]. Pool boiling heat transfer using 

nanofluids (γ-alumina nanoparticles, 10-50 nm) was experimentally investigated [84]. 

[85]. Pool boiling CHF enhancement in nanofluids by forming a porous layer of 

nanoparticles on the heater surface was presented [86]. Pool boiling heat transfer of ZrO2 

based aqueous nanofluids at low volume fraction of solid dispersion was observed [87]. 

Decreased heat transfer during pool boiling of diluted suspensions of sphere-shaped 

titania and alumina particles suspended in ethylene glycol-water mixtures was reported 

[88]. The mechanism of surface coating during nucleate boiling of nanofluids was 

experimentally explored [89]. A pool boiling heat transfer model for nanofluids based on 

fractal distribution of nanoparticles and nucleation sites on boiling surfaces was presented 

[90]. The heat transfer characteristics of CuO nanofluids for low concentrations and 

at/above atmospheric pressures were experimentally studied and enhanced critical heat 

flux was observed [91-94]. The pool boiling heat transfer under heating surface with 

various interlaced wettability using nano-silica particles as the coating element was 

investigated [95]. A theoretical correlation for pool boiling of TiO2-water nanofluid 

solution on a stainless steel flat heating surface was developed [96-99]. A correlation for 

predicting heat transfer coefficient for nucleate pool boiling of TiO2-water nanofluids at 
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several low concentrations using two horizontal circular plate heaters having different 

surface roughness was presented [100].  

The pool boiling heat transfer for saturated water over nanoparticle modified 

aluminium surfaces having different surface wettability were investigated [101]. During 

pool boiling experiments on ZnO nanoparticles concentrations with water at atmospheric 

pressure on an electrically heated Ni-Cr wire, 70 to 80% enhancement in critical heat flux 

for pure water was reported [102]. Enhancement in pool boiling heat transfer was 

observed by creating one-dimensionally grown alumina nano porous surface [103]. An 

empirical correlation was developed to predict the heat flux for nucleate pool boiling of 

nanofluids [104]. The effect of nanorod length on pool boiling heat transfer for water was 

experimentally studied [105]. The influence of nanoparticles on the pool boiling heat 

transfer in open-celled foams at atmospheric pressure was investigated [106]. Heat 

transfer characteristics during pool boiling of nanofluids on cylindrical surface were 

investigated and it was observed that the heat transfer coefficient depends upon 

nanoparticle concentration and boiling pressure [107]. Various nanofluids are being used 

as additives in pure liquids or as surface coating on the heating surfaces to enhance the 

heat transfer characteristics. From the literature, it has been observed that low 

concentrations of nanoparticles in pure liquids cause enhancement in boiling 

performance, whereas reduction in heat transfer is observed at high concentrations of 

nanoparticles. Thus, determining the optimal concentration of nanoparticles becomes a 

challenging task, which significantly affects the pool boiling heat transfer. 

 

Hydrocarbons and Additive Mixtures 

Hydrocarbon, an organic compound consisting of hydrogen and carbon, is the primary 

energy source for current civilization and is mainly classified into saturated hydrocarbons 

(Alkanes) and unsaturated hydrocarbons (Alkenes and alkynes). Additive mixtures of 

two or more liquids are being used in various heat transfer applications to obtain desired 

properties. An estimation method to predict the heat transfer of nucleate pool boiling in 

binary mixtures using Colburn analogy was described [108]. An experimental study to 

determine the effects of binary diffusion and surface tension on the pool boiling heat 

transfer of dilute aqueous solution of ethylene glycol was presented [109]. The boiling 

curves obtained for various concentrations of water with cationic surfactant were 

compared [110]. The heat transfer coefficients of different mixtures were reported lower 

than those obtained for pure components constituting the mixture for a given heat flux 

[111]. The influence of thermo-physical properties on pool boiling heat transfer of 

hydrocarbons (propane and i-butane) within the evaporator of a refrigeration system 

(Figure 1) was experimentally investigated and compared to data available in the 

literature [36]. The heat transfer and boiling temperature of different concentration levels 

of sugar-water solution was studied [112]. Nucleate boiling heat transfer coefficients of 

mixtures of water-monoethanolamine and water-diethanolamine on a horizontal heating 

rod at atmospheric pressure were experimentally measured [113]. . Schematic diagram 

of Gorenflo pool boiling apparatus is shown in Figure 2. Heat transfer coefficient for the 

nucleate pool boiling of methanol, distilled water, and their mixtures on a plain as well 

as copper-coated stainless steel tubes at atmospheric and sub-atmospheric pressures were 

measured [114]. 

Experiments were conducted to enhance pool boiling heat transfer by adding 

ammonium chloride as a surfactant in pure water [115]. The heat transfer in saturated 

nucleate pool boiling of the water/lithium bromide mixture on a uniformly heated vertical 

cylinder at a pressure of 2 bar was reported [116]. Nucleate pool boiling heat transfer 
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coefficient of ternary mixtures of ethanol, monoethylene glycol, and diethyleneglycol as 

a new coolant with higher heat transfer coefficient was investigated [117]. An 

experimental study on n-pentane nucleate boiling at atmospheric pressure and saturation 

temperature for different gap sizes (Figure 3) in a confined space was conducted [118]. 

 

 

 
 

Figure 1. Pool boiling setup [98]. 

 

 

 

Figure 2. Schematic diagram of Gorenflo pool boiling apparatus [113]. 

 

Pool boiling heat transfer in water/glycerol binary solution on a horizontal rod 

heater for various concentrations at atmospheric pressure was studied [119]. Various 

correlations for predicting the pool boiling heat transfer coefficient of FK-649 at various 

saturation conditions were compared to replace engineered fluids [120]. Pool boiling 

investigation of PF-5060 under reduced gravity and a pressure of 600 mbar was presented 

[121]. The bubble departure diameters during saturated pool boiling of various binary 

mixtures under atmospheric pressure conditions were reported [79]. The boiling heat 

transfer coefficient for nicrome wire immersed in saturated water with and without 

various concentrations of 2-Ethyl 1-Hexanol as an additive was evaluated [122]. The 

prediction of pool boiling heat transfer coefficient for multi-component system using 
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artificial neural network method was reported [123]. From the literature, it has been 

concluded that various binary and ternary mixtures are used to enhance the heat transfer 

performance. Higher heat transfer coefficients are obtained with the suitable mixtures of 

hydrocarbons and other commercial liquids as compared to pure liquids. 

 

 
 

Figure 3. Pool boiling under closed conditions [105, 106]. 

 

Natural and Synthetic Colloidal Solutions 
A colloidal solution is a mixture of a colloid microscopically dispersed throughout 

another substance. Particles in colloidal solution are smaller and do not settle, 

distinguishing it from suspension. The major natural colloidal solutions widely used in 

food processing are milk and sugar cane juice. Milk is an emulsified colloid of liquid 

butterfat globules dispersed with a water-based solution. Sugar cane juice is an extremely 

complex liquid medium containing many organic and inorganic constituents in soluble 

and colloidal form. The pool boiling of sugar cane juice in an aluminium pot heated by 

an electric hot plate using regression analysis by applying Rohsenow correlation was 

studied [124]. Pool boiling of milk under open and closed conditions (Figure 4) in 

aluminum and stainless steel pots has been studied using Rohsenow correlation with the 

help of linear regression analysis for different heat inputs [125-128]. The convective heat 

transfer coefficient and heat flux were reported to increase with the increased heat input. 

The average values of fluid-surface constant Csf for Rohsenow pool boiling correlation 

during khoa making in an aluminum and stainless steel pot were evaluated as 
3108815.7  and 3104772.9  respectively [129]. From the above literature, it has been 

observed that pool boiling behavior of natural colloidal solutions, namely milk and 

sugarcane juice, was studied by applying Rohsenow correlation. Heat transfer coefficient 

during pool boiling was reported to increase with increased heat inputs. Heat transfer 

performance was observed to be dependent on proper selection of pot material and heating 

conditions. In synthetic colloidal solutions, the heat transfer and CHF were found to be 

dependent on the solution’s concentration. 

 

POOL BOILING APPLICATIONS AND ITS CORRELATIONS 

 

Pool boiling is an adequate technique for many heat transfer applications because of high 

heat transfer and high heat flux at moderate temperatures. Some of the applications of 
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pool boiling are: purification of water by boiling, steam generation by rapid evaporation 

for various industrial purposes [130], refrigeration system and evaporation of various 

liquids like refrigerants for industrial purposes, petroleum oil refineries, cooling of 

electronic equipments [131, 132], processing of milk for khoa making [125-129], 

processing of sugarcane juice for jaggery making [124], fluid handling and control 

system, cooling of nuclear reactor system [133], heat transfer and optimal system design 

[134], as well as impulse drying of paper web in paper industry [135], and others. Major 

existing correlations for prediction of pool boiling heat transfer coefficient are listed in 

Table 2. 

 

Table 2. Pool boiling correlations. 

 

Researchers Correlations Applications 
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PL = Pure liquids, R = Refrigerants, HC = Hydrocarbon, CS = Colloidal Solutions, W = 

Water, O = Organic fluids, C = Cryogenic fluids, NF = Nanofluids, BM = Binary 

mixtures, LM = Liquid mixture    

 

CONCLUSIONS 

 

Pool boiling is an effective and efficient method of heat transfer to liquids. Efficient 

boiling of the refrigerants is very necessary for an effective refrigeration system. Nucleate 

boiling under reduced gravity, varying pressures and different boiling surface roughness 

have been used to enhance boiling performance. Modified surfaces and increased 

nucleation sites on the boiling surface are found to be effective techniques to enhance the 
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boiling characteristics of refrigerants. Various modifications in heating surfaces and use 

of pure liquids are found to enhance pool boiling performance by improving boiling 

characteristics, i.e. heat flux, critical heat flux, heat transfer coefficient, bubble growth 

and departure, and etcetera. Nanofluids are being used as additives in pure liquids or as 

surface coating on the heating surfaces to enhance the heat transfer characteristics. 

Boiling performance enhancement in pure liquids has been observed at low 

concentrations of nanoparticles. Various binary and ternary mixtures are also used to 

enhance the heat transfer performance. Higher heat transfer coefficients are obtained with 

the suitable mixtures of hydrocarbons and other commercial liquids. A correct and 

significant correlation for heat flux and heat transfer coefficient calculation is still a 

challenge to be explored. A concerted effort is required to search the optimum 

mathematical modeling and numerical analysis techniques to predict the inter-relative 

behavior of the sub-processes involved in boiling. Nanoparticles coatings of different 

layer thickness applied to the heater surface can be analyzed optimally to enhance the 

pool boiling heat transfer. Use of acoustic fields, electromagnetic fields, and ultrasonic 

vibrations can be optimized for the heat transfer enhancement for various liquids. 

Analysis and design of irregular geometrical corrugation on the heating surfaces can be 

performed to achieve heat transfer enhancement. 
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