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ABSTRACT 

 

Analysing and modelling efforts on production throughput are getting more complex 

due to random variables in today’s dynamic production systems. The objective of this 

study is to take multiple random variables of production into account when aiming for 

production throughput with higher accuracy of prediction. In the dynamic 

manufacturing environment, production lines have to cope with changes in set-up time, 

machinery breakdown, lead time of manufacturing, demand, and scrap. This study 

applied a Bayesian method to tackle the problem. Later, the prediction of production 

throughput under random variables is improved by the Seasonal Autoregressive 

Integrated Moving Average (SARIMA) method. The integrated Bayesian-SARIMA 

model consists of multiple random parameters with multiple random variables. A 

statistical index, R-squared, is used to measure the performance of the integrated model. 

A real case study on tile and ceramic production is considered. The Bayesian model is 

validated with respect to the convergence and efficiency of its outputs. The results of the 

analyses indicate that the Bayesian-SARIMA method produces a higher R-squared 

value, at 98.8%, compared with previous studies on Bayesian methods where the value 

was 90.68% and the ARIMA method where it was 97.38%. Consequently a robust 

approach in terms of the degree of prediction accuracy is proposed. This integrated 

method may be applied for the estimation of other production performance factors like 

lead time and cycle time in different types of dynamic manufacturing environment. 

 

Keywords: Production throughput; breakdown; demand; lead time; scrap. 

 

INTRODUCTION 

 

Practically, the production rate at a workstation depends on random variables in the 

production line, which affect the final product throughput. The ability to handle random 

variables helps industrial engineers to accurately plan in order to meet customers’ orders 

on time, thereby resulting in a competitive advantage for manufacturers. Industrial 

engineers have to match the production throughput with customers’ orders by accurately 

predicting the throughput using a robust approach. However, current theories for 

handling and evaluating random variables and uncertainties under production 

throughput modelling are still under debate because these theories depend on the time 

factor [1, 2]. Production throughput is considered an important parameter of production 

line performance [3-5]. Considering and handling the various production uncertainties 

on the shop floor are new challenges for academic research, and are known as complex 
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optimization problems.  In this study, the emphasis is on the production line random 

variables and uncertainties from the practical standpoint. This study focuses on the tile 

production industry. A more accurate model for estimating production throughput under 

the set-up time, scrap, break-time, demand, and lead time of manufacturing is derived 

using a Markov chain Monte Carlo (MCMC) algorithm for Bayesian-autoregressive 

integrated moving average (ARIMA) modelling. The overall operations for tile 

production are presented in Figure 1, which shows how raw materials including water 

and soil that is usually clay are mixed to provide slurry. Granule are made when the 

slurry is dried. When the granule is ready, the body of the tiles in the pressing stage is 

produced, namely, bisques. The bisques are moved to another stage called glazing and 

printing. The bisques are first sprayed with glaze. Glazes include frit, sand, kaolin, 

colouring agents, and chemical and mechanical resistance to prepare the bisque for 

firing. After spraying, the redundant glaze from the edges of the bisques is cleaned, and 

then they are transferred for printing. Printing is performed using different colours and 

lines (designs), which produce different types of tiles, along with gluing. Some types of 

tiles require two or three times of gluing and printing screens. When all this is done, the 

tiles are then transferred to a large kiln for firing. Finally, the tiles are ready for sorting 

and packing. Machines are subject to random failures, and set-up time is required to 

make changes for different product types in the real case study. 

 

 
 

Figure 1. The flow of tile production. 

 

LITERATURE REVIEW 

 

Nowadays, the issue of how to handle production changes is becoming crucial. Studies 

show that processing time and breakdown time affect the production throughput [3, 6]. 

Superior planning decisions are made by models that consider uncertainties and changes 

compared to models that do not [7]. Three uncertainties, namely, demand, 

manufacturing delay, and capacity scalability delay, are introduced by [8]. Demand 

changes, lead time variations, and uncertainty in resource breaks are surveyed in 
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manufacturing environments and the results show that there are significant uncertain 

parameters [9]. An analytical algorithm was presented by Gilks, Richardson [10]. The 

authors predicted the production throughput under unbalanced workstations. A linear 

regression model was used for formulating strategy, environmental uncertainty, and 

performance measurement [11]. The Bayesian approach was explicitly used for external 

evidence in the design, monitoring, analysis, interpretation, and reporting of scientific 

investigations [12]. The most appropriate method in this context is MCMC, and is used 

in virtually all recently conducted Bayesian approaches [13]. The popular MCMC 

procedure is Gibbs sampling, which has also been widely used for sampling from the 

posterior distribution based on stochastic simulations for complex problems [14]. Gibbs 

sampling is used to solve complex statistical problems [15]. A few thousand iterations 

should be sufficient for moderate sized datasets involving standard statistical models 

[16]. 

 

METHODOLOGY 

 

Bayesian inference is applied for this study. It uses a distribution-based approach where 

the prior probabilities are utilized to quantify uncertainty regarding the occurrences of 

events. The tile and ceramic industry is chosen because it is a real case study and it is 

under a dynamic production system and uncertainty. This industry comprises both 

manual and automated processes. The case study is located in the Alborz industrial city, 

Qazvin province, Iran. Data recorded over 78 weeks were found to be available for 20 

highly requested types of tiles. More observational data were then continuously 

collected for a further 26 weeks for the same tile types. These data were collected for all 

six random variables: production throughput, breakdown time, lead time of 

manufacturing, demand, set-up time, and scrap. Once any breakdown time or changes 

occurred, they were recorded on a prepared form by the factory. Time was recorded 

using a clock watch/stopwatch. Then, at the end of the week, the occurrences were 

counted for each random variable, to be used for the following week’s production plan. 

Thus, data recorded during 104 weeks were used as inputs for each random variable to 

estimate the production throughput. The ARIMA model was compiled with the 

Bayesian model, called a hybrid model. The best compilation of the hybrid model was 

considered based on generating the lowest Mean Absolute Percentage Error (MAPE). 

The improvements included  changes to the values of the parameters p and q in ARIMA 

that were determined by the Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF). The algorithm procedure for the Bayesian-ARIMA 

approach is illustrated in Figure 2, which presents five random variables as inputs and 

one output which is the production throughput.  

After collecting the observed data on both inputs and output, weakly informative 

priors [17] are suggested as the prior distribution of uncertainty to be considered for 

Bayesian inference, which is sampled by the Gibbs sampling method for a few thousand 

iterations as burn-in. The likelihood distribution of the observed data is calculated by 

the BUGS. The products of WIPs of uncertainty and the likelihood distribution of 

observed data with a few thousand iterations give the posterior distribution of uncertain 

parameters. Later, the model output is checked for validity by checking the convergence 

of two chains of sampling and efficiency of the Monte Carlo (MC) procedure by 

checking the error of MC, which should be less than 5% of the standard deviation from 

the posterior mean estimation. If this is not valid or efficient, it may try for other 

distributions and a greater number of iterations.  
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Figure 2. Bayesian-ARIMA approach algorithm. 
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Subsequently, through the estimated posteriors, the production throughput is 

predicted. The difference between the predicted production throughput and actual 

production throughput is checked for time-dependent correlation using ACF and PACF 

in the ARIMA approach. The parameters of the ARIMA model are estimated with the 

significant time-dependent correlation of 5%. Then the significance of the coefficients 

of ARIMA are checked by checking the t test and p-value. Finally, the estimated outputs 

of the ARIMA model are added to the predicted outputs of the Bayesian model.  

 

Number of Iterations for Sampling 

 

Four “burn-in” iterations: 1000, 5000, 8000, and 10,000, were examined. Iteration starts 

from 10,000 to 20,000 for drawing samples to approach convergence and reduce the 

Deviance Information Criterion (DIC) and MC error. Iteration started from 1000 and 

was increased until it reached convergence and the lower error of MC. The number of 

optimal iteration runs was determined by the higher level of convergence and the lower 

value of MC error and DIC. 10,000 iterations were carried out to generate initial values 

and 10,000 iterations were performed to maximize the posterior mean, starting from 

10,001 to 20,000. 

 

Bayesian Model Validation 

 

The model was validated through its convergence and the efficiency. Convergence was 

checked in three ways. The first checking was by visual inspection of the trace/history 

plots. The model’s convergence was achieved when the two chains were overlapping. 

The convergence graphically presents how quickly the prior distributions of 

uncertainties approach the posterior distributions. The second checking was based on 

the autocorrelation test. The autocorrelation is defined between 0 and 1 or -1. A slow 

convergence of two chains graphically shows the high autocorrelation within chains. It 

implies that two chains are mixed slowly because true distributions are defined. Thus, 

the mixed or convergence chain contains most of the information needed to estimate an 

accurate posterior distribution that indicates the validity of the model. The third 

checking used the Brooks Gelman Rubin (BGR) diagnostic. BGR numerically shows 

the convergence ratio, which should be near to 1 [18]. The idea is to generate multiple 

chains starting at over-dispersed initial values, and assess convergence by comparing 

within and between chain variability over the second half of those chains. According to 

Li, E. Blumenfeld [18], the BGR is calculated as shown in Eq. (1): 

 

BGR = 
𝑊

𝐴
                                                                    (1) 

 

where W is the width of the empirical credible interval of two chains based on all 

samples, and  A is the width average of empirical credible intervals across the two 

chains. 

 

The efficiency of the model was checked by calculating the MC error. A lower 

value of MC error shows more accurate estimation of parameters. The MC error for 

each unknown parameter should be less than 5% of the sample standard deviation [19], 

which indicates the model validation. The MC error for generating posterior parameters 

for each uncertainty is calculated by Eq. (2) according to [19]. 
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MC error =
𝑆𝐷

√𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
                                              (2) 

 

where SD is the standard deviation. 

 

Higher efficiency and lower MC error were achieved by adjusting the variances 

of prior distributions and number of iterations. 

The following assumptions were considered for deriving the hybrid Bayesian-

ARIMA model. 

 Normal distributions for priors were considered to enable comparison with the  

ANFIS model,  

 Five random variables were considered based on the case study problem and 

availability of data for a long period of time (104 weeks) with reliable numbers 

of observations, 

 Independent errors for random variables were assumed to be normally 

distributed. 

 

RESULTS AND DISCUSSION 

 

Prior Probability Distribution of Uncertain Parameters 

 

WIPs are considered for prior distributions, because the advantage of WIPs is that the 

production management does not need to provide any prior opinions about the process. 

Different variances from 10 to 10,000, which should be written as precisions of 0.1 to 

0.0001 in BUGS, were tested for normal prior distributions based on the DIC. The best 

parameters were chosen according to the least DIC [15]. The prior distribution by the 

normal distribution is presented in Eq. (3) [20]. 

 

P (𝛽𝑖) ~ 𝑁 (𝜇, 𝛿2) =  
1

𝛿√2𝜋
𝑒

− 
(𝛽𝑖−𝜇)2

2𝛿2                                         (3) 

 

Table  1 presents the different variances of normal distributions and the 

calculated DIC respectively. Although set 1 resulted in lower DIC, as shown in Table 1, 

the other sets (different values given to the prior distributions) do not affect the DIC 

much. Thus, the prior distribution is correct because it has no substantial effect [21].   

 

Table 1. Different parameters assigned as prior distributions. 

 

Sets Variances DIC 

1 𝛽0 and 𝛽4= 10, 𝛽1 and 𝛽3 = 100, β2 and β5 = 1000 1847 

2 𝛽0 and 𝛽4= 100, 𝛽1 and 𝛽3 = 1000, 𝛽2 and 𝛽5 = 10 1848 

3 𝛽i = 100, i = 0,...,5 1848 

4 𝛽i = 1000, i = 0,...,5 1849 

5 𝛽i = 10000, i = 0,...,5 1850 

 

The prior information on uncertainties with the normal distributions by means of 

zero and different variances ranging from 10 to 1000 is presented in Eq. (4–6). 
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P (𝛽0) = P (𝛽4)~ N (0, 10)                                                     (4) 

P (𝛽1) = P (𝛽3)~ N (0, 100)                                                    (5) 

P(𝛽2) = P (𝛽5)  ~ N (0, 1000)                                                  (6) 

 

The likelihood distributions of observations for uncertain variables are gained by 

integrating out the unknown parameter as shown in Eq. (7) [20]:  

 

𝑃 (𝑢|𝛽𝑖) =
1

 𝜎 √2𝜋
𝑒

− 
(𝑢−𝛽𝑖)

2

2𝜎2                                                        (7) 

 

The Bayes rule to postulate a prior on 𝛽𝑖 for the data observed for each uncertainty (u) is 

presented as posterior distribution in Eq. (8) [20]. 

 

P (𝛽𝑖|𝑢) ∝ P (𝛽𝑖)𝑃 (𝑢|𝛽𝑖)  ∝  
1

𝛿 √2𝜋
𝑒

− 
(𝛽𝑖−𝜇)

2

2𝜎2 ×  
1

𝛿 √2𝜋
𝑒

− 
(𝑢− 𝛽𝑖)2

2𝛿2                (8) 

 

Dynamic Trace Plot of Uncertain Parameters 

 

The convergence diagnostics were graphically checked through two chains of generated 

values. The convergence was achieved because both chains were overlapped with each 

other [18]. The dynamic trace plots of the stochastic parameters on 10,000 iterations are 

shown in Figure 3 with a 95% credible interval. The history trace of 10,000 iterations of 

maximizing the posterior mean for all stochastic variables was checked for convergence 

too with a 95% credible interval. The convergence was approached because both chains 

look like a fat hairy caterpillar [22]. 

 

 
 

Figure 3. Dynamic trace plots of the stochastic parameters. 
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Autocorrelation Function of Uncertain Parameters 

 

The autocorrelation function plot for each uncertain parameter is shown in Figure 4 in 

two chains: blue and red. The plots indicate that the posterior distributions are gradually 

integrating, which implies high posterior correlations between parameters. The plots 

show that all uncertain parameters were properly integrated before 20 lags.  

 

 
 

Figure 4. Autocorrelation function of the stochastic parameters. 

 

Brooks Gelman Rubin Statistics 

 

BGR statistics were calculated for all stochastic parameters. The calculated BGR was 

approaching 1 to prove that the number of iterations is enough and the model 

convergence was achieved [22]. Figure 5 shows that the chains of stochastic parameters 

approached convergence in most cases of iterations. The green line shows W 

(normalized width of two chains) and the blue line exhibits A (normalized mean within 

two chains), and the BGR is depicted by the red line. W and A were described under Eq. 

(1) as the BGR formula. The blue and green lines finally should be stabilized to tend to 

an approximately constant value [18]. When the iteration is increased, W leads to A. 

Figure 5 shows that the green line is properly overlapped with the blue line especially 

after 12,000 iterations. This causes the BGR to become nearer to 1.   
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Figure 5. BGR statistics for uncertain parameters. 

 

Efficiency of the Bayesian Model 

 

Table 2 shows that the MC error for estimating the coefficient of intercept is about 

0.0092, and for the coefficients of breakdown time, demand, lead time, set-up time, 

scrap are 0.01033, 0.00035, 0.00132, 0.00863, and 0.00133 respectively. The Bayesian 

model shows high efficiency for the estimated coefficients of production uncertainties 

as the MC errors are less than 5% of the standard deviation of coefficients according to 

[19], as presented in Table 2. 

 

Table 2. MC errors of uncertain parameters. 

 

Coefficient MC error 

𝛽0 0.0092 

𝛽1 0.01033 

𝛽2 0.00035 

𝛽3 0.00132 

𝛽4 0.00863 

𝛽5 0.00133 

 

Estimates of Posterior Distributions of Uncertain Parameters 

 

The final set of posterior distributions estimations of production uncertainties using 

BUGS with 95% credible interval is summarised in Table 3. The mean of the posterior 

distributions of 𝛽𝑖 is used for the Bayesian regression model because it minimizes the 

expected square loss according to Sheu and O’Curry [23]. Therefore, the Bayesian 

model developed is formulated in Eq. (9.): 
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𝑃𝑡,𝑙̂ ~ 0.00558 –  0.4704 𝐵𝑡,1 +  0.9526 𝐷𝑡 −  0.1594 𝐿𝑡,1 − 0.01433 𝑆𝑒𝑡,1 −
 0.1461 𝑆𝑡,1(𝑡) + 𝑒𝑡                                                                               

where 𝑒𝑡 ~ N (0, σ
2
) 

 

Table 3. Summaries of posterior distributions of uncertain parameters. 

 

Coefficient Mean SD 5% of SD  2.5% 97.5% 

𝛽0 0.00558 3.207 0.160  -6.231 6.301 

𝛽1 -0.4704 4.266 0.213  -8.876 7.923 

𝛽2 0.9526 0.123 0.006  0.713 1.194 

𝛽3 -0.1594 0.553 0.027  -1.235 0.935 

𝛽4 -0.01433 3.161 0.158  -6.240 6.160 

𝛽5 -0.1461 0.471 0.023  -1.074 0.791 

 

The developed Bayesian model proposes a credible interval of changes for mean 

of uncertainties with a 95% credible interval in the following borders. 𝛽1 has the widest 

prediction interval compared to other parameters, with the highest standard deviation of 

4.266, as presented in Table 3. The ACF diagram is examined for the Bayesian residuals 

in Figure 6, which shows that there are significant autocorrelations in lags 1, 2, and 3 

for Bayesian residuals with 5% significance limits. 
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Figure 6. Autocorrelation function of Bayesian residuals. 

 

The ACF values were calculated for the Bayesian residuals. This shows that the 

parameter numbers of the moving average for ARIMA modelling should be 1, 2 or 3 as 

the t statistic values are greater than 1.96 based on a 95% confidence interval and their 

Ljung-Box-Q (LBQ) shows the smallest amount. The PACF for Bayesian residuals is 

also performed. The diagram of PACF of the Bayesian model is presented in Figure 7, 

which shows that there are significant partial autocorrelations in lags 1, 2, 7, and 8 for 

Bayesian residuals with 5% significance limits. 
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Figure 7. Partial autocorrelation function of Bayesian residuals. 

 

The values of PACF for Bayesian residuals are calculated. This shows that the 

amounts of PACF for Bayesian residuals are significant with respect to 5% significance 

limits in lags 1, 2, 7 and 8. Thus, according to the results of PACF as tabulated in Table 

4, the candidates for the autoregressive parameter should be 1, 2, 7 or 8 because the t 

statistic values are 3.67, 3.44, 2.38, and -2.92 respectively, and are thus greater than the 

normal score of 1.96 or less than -1.96 based on a 95% confidence level. Therefore, the 

Bayesian residuals could be considered for ARIMA modelling in order to check if the 

utilization of the ARIMA approach could further increase the accuracy of the developed 

Bayesian model. 

 

SARIMA Model 

 

The modified ARIMA model was found in both the seasonal autoregressive and moving 

average. The final summaries of the coefficients of the SARIMA (1, 2) model are 

tabulated in Table 4.  

 

Table 4. Final estimates of ARIMA parameters. 

 

Type Coefficient t p 

SAR  12 -0.9993 -31.36 <0.0001 

SMA  12 -1.6337 -16.19 <0.0001 

SMA  24 -0.7269 -6.82 <0.0001 

Constant 42.67 3.51 0.008 

 

where SAR is seasonal autoregressive, 

           SMA is seasonal moving average, 

           t = t statistic. 

           p = p-value. 

 

Table 4 shows that all the coefficients of the ARIMA model are optimum and 

significant, because their p-values are < 0.0001 and for constant parameter it is 0.008. 
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Thus, the SARIMA model: SAR (1)12, SMA (2)12, and SMA (2)24 is formulated 

according to Zimmermann [24] in Eq. (10): 

 

𝜖𝑡 ~  42.67 − 0.9993 𝜖t-12 + 𝑎𝑡 − 1.6337𝑎𝑡−12 − 0.7269 𝑎𝑡−24               (10) 

 

Bayesian-ARIMA Model  

 

The hybrid Bayesian-ARIMA model is the combination of both the modified ARIMA 

model shown in Eq. (10.) and the developed Bayesian model presented in Eq. (10), as 

presented in Eq. (11.). The main benefit of this model is that it can consider time 

dependency and variations of uncertainties together because it accounts for the element 

of time compared to the Bayesian model individually.  

 

𝑃𝑡,𝑖̂ ~ 0.005581 − 0.4704 𝐵𝑡,1 + 0.9526 𝐷𝑡 − 0.1594 𝐿𝑡,1 − 0.01433 𝑆𝑒𝑡,1

− 0.1461 𝑆𝑡,1 + 42.67 − 0.9993 𝜖𝑡−12  +  𝑎𝑡 − 1.6337𝑎𝑡−12

− 0.7269 𝑎𝑡−24  +  𝑒𝑡 
(11.) 

 

Table 5 presents the accuracy of previous researches compared to this research. The 

accuracy of the developed Bayesian-ARIMA for this research is superior to the 

Bayesian and ARIMA in previous researches. In this study, more uncertain variables 

were taken into the model, which thus presents a stronger and more practical model with 

more observations, namely 104. More observations and more involved variables could 

produce a robust model with higher accuracy of estimation, indicated by 98.8%.   

 

Table 5. Comparison of previous approaches with the proposed approach. 

 

Inputs 

No.  

Outputs 

No  

observations  R
2
  Approaches  Industry  References  

1  1  17  90.68%  Bayesian  Lath  [23] 

2  1  85  97.38%  ARMA  Automotive  (Popova, 2000) 

5  1  104  98.8%  Bayesian-

ARIMA  

Tile  This research  

 

CONCLUSIONS 

 

This study found that the combination of the Bayesian inference and ARIMA approach 

on detecting production uncertainties and their impacts on the production throughput 

were as viable and accurate as the Bayesian and ARIMA approaches individually. The 

study modelled the propagation of uncertainties in a serial tile production line consisting 

of five random variables: demand, breakdown time, scrap, set-up time, and lead time, 

using a real case study on the tile industry in Iran. The hybrid model provides 

management with a clear picture of the variability inherent in the production processes. 

The proposed model is used to accurately predict the production throughput, and 

discover the mathematical relationship between the production uncertainties and 

throughput. The proposed hybrid model (Bayesian-ARIMA) demonstrated accuracy 

with an R-squared value of 98.8%. Therefore, the Bayesian-ARIMA is recommended 

for production estimation under random variables and uncertain parameters of 

production.   
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