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ABSTRACT 

 

In this study, some physical properties of a laminated composite beam were estimated 

by using the inverse vibration problem method. Laminated composite plate was 

modeled and simulated to obtain vibration responses for different length-to-thickness 

ratios in ANSYS. A numerical model of the laminated composite beam with unknown 

parameters was also developed using a two-dimensional finite element model by 

utilizing the Euler-Bernoulli beam theory. Then, these two models were embedded into 

the optimization program to form the objective function to be minimized using genetic 

algorithms. After minimizing the squared difference of the natural frequencies from 

these two models, the unknown parameters of the laminated composite beam were 

found. It is observed in this study that the Euler-Bernoulli beam theory suppositions 

approximated the real results with a rate of %0.026 error as the thickness of the beam 

got thinner. The estimated values were finally compared with the expected values and a 

very good correspondence was observed. 

 

Keywords: Inverse problem; finite element method; laminated composite beam; genetic 

algorithm; free vibration. 

 

INTRODUCTION 

 

The use of composites as engineering materials has increased greatly in recent years. 

Because of their strength, lightweight, resistance to corrosion and wear, and some other 

superior properties, they have taken the place of other engineering materials (Adebisi, 

Maleque, & Rahman,  2011; Hariprasad, Dharmalingam, & Praveen Raj,  2013). For 

this reason, the physical properties of composite materials need to be known in order to 

be analyzed and designed structurally. Composite beams find an important area of 

application in many mechanical, civil and aeronautical engineering structures (Giunta, 

Biscani, Belouettar, Ferreira, & Carrera,  2013; Jeffrey, arlochan, & Rahman,  2011; 

Umar, Zainudin, & Sapuan,  2012). As a result, studies on their static and dynamic 

stability analysis have gained an important place among mechanics research, and hence 

a vast amount of study has been carried out on this area lately (Huzni et al.,  2013; Li, 

Wu, Kong, Li, & Wu,  2014). However, designing composite beams to represent pre-

specified behavior or that are suitable for any working conditions is a hard task because 

of the large number of unknown parameters involved in their design. Consequently, to 
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overcome this difficulty and to estimate composite beam parameters, the inverse 

vibration problem method has found its place in the design of composite beams. 

The inverse vibration problem method can be basically used to estimate 

unknown parameters by using data obtained from experiments or computer simulations 

(Aster, Borchers, & Thurber,  2013). A number of studies have used inverse vibration 

for parameter estimations. For instance, (Huang, Shih, & Kim,  2009) attempted the 

inverse vibration method to solve a forced vibration problem that arose in cutting tools 

which were modeled as Euler-Bernoulli beams. In the numerical solutions, a conjugate 

gradient method was utilized and the simulation results for the beam displacements 

were used to estimate the external forces on the cutting tool. (Huang,  2005) tackled an 

inverse nonlinear forced vibration problem and solved it by using the conjugate gradient 

method. In the solution, experimental results were used to estimate external forces on a 

damped multi degree of freedom system. (Chiwiacowsky, de Campos Velho, & 

Gasbarri,  2004) used the dynamics inverse problem to assess damage in buildings 

through the use of experimental vibration measurements. (Marinov & Vatsala,  2008) 

utilized the variational imbedding method to solve the inverse problem that arose during 

the estimation of unknown coefficients of the Euler-Bernoulli equation. (Gladwell,  

1997, 1999, 2006) developed a finite element model for an inline two-degrees-of-

freedom system and solved it as an inverse vibration problem. Mass and stiffness 

matrices were written in a closed form procedure in such a way as to minimize the 

mass. 

The dynamic stability of composite Euler-Bernoulli beams was also investigated 

in a number of studies. For instance, (Della & Shu,  2005) solved analytically the free 

vibration problem of composite beams with two overlapping delaminations. The 

problem was investigated with various boundary conditions and obtained natural 

frequency and mode shapes. Results from this model were compared with the 

experimental findings. (Wang,  2013) obtained a set of coupled linear differential 

equations of motion for free vibration of a composite beam with an asymmetric cross-

section using the Euler-Bernoulli beam approach. An algorithm was developed to solve 

the resultant equations. (Ghayesh, Yourdkhani, Balar, & Reid,  2010) investigated the 

vibration and stability of laminated composite beams. The governing equations were 

obtained using Newton’s second law of motion and constitutive relations based on 

classical laminated beam theory. In this paper, the inverse vibration problem was 

utilized to find the physical properties of a laminated composite Euler-Bernoulli beam 

from its measured vibration frequencies. In the method proposed, the difference 

between the measured frequencies and the ones from a numerical model with unknown 

parameters is minimized to be able to choose the best solution among infinitely many 

possible solutions that can arise in an inverse method. Simulation results from an 

ANSYS model were used to imitate the experimental data. Genetic algorithms are used 

in the optimizations to avoid being trapped by local minima.   

 

MATHEMATICAL MODEL 

 

Basic assumptions of the Euler-Bernoulli beam theory are similar to the classical 

lamination theory. These theories are only valid for thin laminates. According to Euler-

Bernoulli beam theory, the deformations caused by the transverse shear stresses are 

accepted as zero (Wang, Reddy, & Lee,  2000).  The bending behavior of an Euler-

Bernoulli beam is shown in Figure 1.The axes and cross-section of the beam under 

consideration are shown in Figure 2. The letter L represents the beam length, I the area 
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moment of inertia, A the cross sectional area, b the width of the beam, and h the height 

of the beam.   

 

 
 

Figure 1. Euler-Bernoulli beam theory (Wang et al.,  2000). 

 

 
 

Figure 2. Coordinates and geometry of laminated composite beam. 

 

The stress-strain relationship for a laminated composite Euler-Bernoulli beam is given 

by Hooke’s law as in  Eq. (.1).  

 

     D                                                           (.1) 

 

where[D] is the bending stiffness matrix while σ represents the stress. The material was 

assumed to be linear orthotropic. 

The terms in Eq. (Chandra, Singh, & Gupta) are defined as follows (Kollár & Springer,  

2003): 
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where  
i

Q represents the reduced elastic constants matrix for the i
th

 layer, as given in Eq. 

(4) (Reddy,  2003): 
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Stiffness matrices for a composite plate composed of L layers (Balci,  2011) are given as 
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The      , ,A B D matrices are the extensional stiffness, bending-extensional 

coupling stiffness, and bending stiffness matrices, respectively. The bending-

extensional coupling stiffness matrix for composite plates with symmetric laminate is 

given as   0B   (Balci,  2011). Due to symmetry, the strains with respect to the 

reference axis are 
0 0 0, , 0x y xy   

 
(Balci,  2011). 

 

FINITE ELEMENT MODEL 

 

A planar beam bending element with two nodes, each having two degrees of freedom, 

was chosen in accordance with the Euler-Bernoulli beam theory. The beam element, 

having the same degree of freedom as the beam deflection w and the rotation of the 

cross-section ϴ,is depicted in Figure 3.   

 

The potential energy for a beam element in bending vibration is given as (Petyt,  1990) 

 

 

2
2

2
0

1

2

l d w
U EI dx

dx

 
   

 
  (7) 

 



 

Balcı and Gündoğdu / Journal of Mechanical Engineering and Sciences     5(2013)     611-622 

615 

 

 
 

Figure 3. Plane beam bending element. 

 

The kinetic energy of a beam element in bending vibration is  
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If the potential and kinetic energy expressions are substituted in the Hamilton 

principle (Petyt,  1990), 
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is obtained, where W expresses the work done by external forces. If Eq. (9) is 

minimized for a system under undamped free vibration, the equation of motion of a 

laminated composite beam undergoing bending vibrations can be obtained as (Balci,  

2011) 

     0e e em q k q         (10) 

 

where [m
e
] and [k

e
] are the mass and stiffness matrices, respectively. If the curvature of 

the laminated composite beam is re-written, 
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Where D is the linear differential operator and w displacement. The beam displacement 

equation is then (Kollár & Springer,  2003) 

 

 w = Nd   (12) 

 

Where N represents the shape function and d the nodal displacement operator. The 

nodal displacement operator is given as 
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If Eq. (13) is substituted into Eq. (12), the expression 

 

     Dw DNd Bd  (14) 

 

isobtained (Kollár & Springer,  2003), where the expression B is the strain-displacement 

matrix.  If the stiffness matrix for the bending beam element is given as (Petyt,  1990), 
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the mass matrix for the bending beam element is also given as (Petyt,  1990), 
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If the mass and stiffness matrices developed for the bending beam element are 

combined together so as to represent a laminated composite beam, 
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are obtained, where the matrices [M] and [K] are respectively the global mass and 

stiffness matrices, and nis the number of finite elements used in the model. 

 

DEVELOPMENT OF SHAPE FUNCTION 

 

The plain beam element shown in Figure 3 has two nodes with two degrees of freedom, 

and hence it has four degrees of freedom in total. To form the shape function, a cubic 

polynomial with four terms for each degree of freedom has been chosen as the 

displacement shape function: 

 

 2 3

1 2 3 4( )w x a a x a x a x     (18) 

 

The beam displacement can be written in the following form (De Abreu, Ribeiro, 

& Steffen Jr,  2004): 

 

    
T

w P a   (19) 

 

In Eq. (19), a is the coefficient vector and P is the interpolation polynomial term 

vector. The coefficient and the interpolation polynomial term vector are given in the 

following format (De Abreu et al.,  2004): 
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If the displacement polynomial given in Eq. (18) is substituted into Eq. (12) in a 

matrix form and expanded for each node (De Abreu et al.,  2004), 

 

     X ad   (21) 

is obtained. X in Eq. (21) represents the expanded displacement matrix of dimension 

4x4. Then, Eq. (21) is solved for the coefficient vector: 

      
1

a X


 d   (22) 

 

If Eq. (22) is substituted intoEq. (19), one may obtain 

 

      
1T

w P X


 d   (23) 

 

If Eq. (23) is substituted intoEq. (12) and reorganized, the shape function is 

developed in the form below: 

 

    
1T

P X

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DYNAMICS ANALYSIS 

 

The equation of motion for the beam undergoing an undamped free vibration was given 

in Eq. (10). The equation of motion for the global system is 

 

 
     M q + K q = 0

  (25) 

 

for which a harmonic solution can be proposed in the following form: 

 

    q = ψ sin(ωt)   (26) 

 

If Eq. (26) is substituted intoEq. (25) 

 

      2- M ψ ω sin(ωt)+ K ψ sin(ωt)=0  (27) 

 

can be obtained. If Eq. (27) is further reorganized, it takes the following eigenvalue 

problem form: 

 

      2K -ω M ψ =0   (28) 

 

where 2   are eigenvalues representing vibration frequencies while   are 

eigenvectors representing vibration modes.  

 

FORMING OBJECTIVE FUNCTION FOR GENETIC ALGORITHM USE 

 

There are infinitely many possible solutions in the solution of inverse problems, and 

hence some form of optimization is necessary to choose the best solution amongst them. 

Furthermore, there is a possibility of getting trapped in local minima in such 
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optimizations of multimodal problems. Therefore, genetic algorithms are utilized to 

make sure that global minima are searched for the solutions. Objective functions are 

needed in the optimizations, and the sum of squared difference between the frequencies 

obtained from simulations and numerical model was accepted as the objective function 

for these optimizations. Natural frequencies are chosen as optimization parameters, as 

they provide more information about systems with fewer data, and this also requires less 

computation time. The objective function used in the objective function evaluations is 

 

     
2

1

( ) min ( ) ( )
n

ANSYS Model
i

FF t t t 


   (29) 

 

where ANSYS  represents the natural frequencies obtained from ANSYS, which imitates 

experimental data, while Model  represents the frequencies obtained from the numerical 

model, which includes unknown system parameters. 

In the optimizations with genetic algorithms, settings are of great importance 

because small changes result in large differences in the solutions. The settings were 

decided after a long period of trial and error, as shown in Table 1 (Balci,  2011). 

 

Table 1.Genetic Algorithm Settings 

 

Population size   30 

Selection      Stochastic uniform 

Mutation   Adaptive feasible 

Mutation rate  0.01 

Crossover Heuristic 

 

RESULTS AND DISCUSSION 

 

Simulation Data 

 

In the study performed in ANSYS, a laminated composite beam with four layers having 

[0/90/90/0] orientation angles and 1500x1500 mesh size is modeled with a clamped-free 

(Chirn & McFarlane) boundary condition. In the model, a SHELL99 element was used 

for the laminated composite beam. The SHELL99 element uses governing equations 

based on the Timoshenko beam theory, which takes into account rotational inertia and 

shear deformation. With these capabilities, the SHELL99 element gives reasonable 

results in the analysis of linear thin structures. The geometric and physical properties of 

the laminated composite beam to be used in ANSYS are provided in Table 2.  

 

Table 2.Geometric and physical properties of laminated composite beam (De Abreu et 

al.,  2004). 

 

Ex=38GPa Ey=3.8GPa Ez=3.8GPa 

Gxy=1.9GPa Gxz=1.9GPa Gyz=0.76GPa 

υxy=0.25 υyz=0.25 ρ=1295kg/m
3 

Lx=1m b=0.01m  
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The laminated composite plate was assumed to have a different length-to-

thickness ratio ( /xL h ) every time that the simulations were executed in ANSYS.  

 

Table 3.Natural frequencies of laminated composite beamfrom simulations (Hz) 

 

/xL h  
Free vibration natural frequencies (Hz),  ANSYS  

Mode I Mode II Mode III Mode IV Mode V Mode VI Mode VII 

100 8.2646 51.611 143.70 279.31 456.95 674.13 928.05 

200 4.1342 25.885 72.377 141.53 233.34 347.42 483.37 

300 2.7563 17.267 48.317 94.594 156.18 232.97 324.81 

400 2.0673 12.953 36.255 71.009 117.30 175.08 244.30 

500 1.6539 10.363 29.011 56.830 93.903 140.20 195.69 

 

Parameter Estimation 

 

The numerical model for the laminated composite beam was constructed in MATLAB, 

and the optimizations were realized in the Genetic Algorithm Toolbox in MATLAB. 

The finite element model for the laminated composite beam was constructed with a 

mesh size of 1500x1500, and its elasticity module E and density ρ were estimated for 

different boundary conditions. The estimates are tabulated together with the objective 

function evaluations and percent errors. 

 

Table 4.Natural frequency (Hz) estimates for laminated composite beam 

 

/xL h  
Natural frequencies (Hz) 

Mode I Mode II Mode III Mode IV Mode V Mode VI Mode VII 

100 7.9194 49.6171 138.9293 272.2459 450.0420 672.2849 938.9764 

200 4.0862 25.6079 71.7028 140.5088 232.2711 346.9728 484.6148 

300 2.7399 17.1704 48.0777 94.2131 155.7409 232.6500 324.9409 

400 2.0635 12.9317 36.2091 70.9554 117.2943 175.2174 244.7252 

500 1.6509 10.3455 28.9678 56.7654 93.8372 140.1766 195.7838 

 

Table 5.Natural frequency estimates for laminated composite beam for different “ /xL h ” 

 

/xL h  

Desired 

(×10
9
 Pa) 

Estimated 

(×10
9
 Pa) 

% Error Objective 

function 

evaluations Ex Ey Ex Ey Ex Ey 

100 38 3.8 34.842 4.192 8.484 -10.263 247.2675 

200 38 3.8 37.189 4.0291 2.134 -6.029 4.4689 

300 38 3.8 37.644 3.9161 0.937 -3.0552 0.5243 

400 38 3.8 37.989 3.755 0.029 1.184 0.2051 

500 38 3.8 37.990 3.76 0.026 1.053 0.020 
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Figure 4. Variation of % error for Exand Eywith respect to “ /xL h ”. 

 

 
Figure 5. Variation of objective function evaluations for Ex and Ey with respect to 

“ /xL h ”. 

 

In this study, the physical properties of an Euler-Bernoulli beam were estimated 

based on its known/measured natural frequencies. The simulation results obtained from 

ANSYS were assumed to be experimental data. On the other hand, the numerical model 

with unknown parameters was established in MATLAB. Finally, the natural frequencies 

from these two sources were combined in the objective function to estimate the 

unknown physical parameters. The inverse vibration problem was tackled as an 

optimization problem and solved using the MATLAB Genetic Algorithm Toolbox. 

Elasticity modules (Ex and Ey) of the beam were estimated simultaneously for different 

rates of length–thickness conditions and compared with the real values. In the 

computations for the two-parameter estimation problem in the x and y directions, the 

objective function evaluations approached zero while the percent errors in the x and y 

directions were, respectively, observed to stay constant around 0.026% and 1.053% as 

the length-to-thickness ratio increased. 
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CONCLUSIONS 

 

The proposed method gives a basis not only for estimation of physical properties of 

materials used in a system but also for estimation of initial conditions and/or boundary 

conditions, etc.  When the results obtained from the optimizations are compared with 

the real values, very good correspondence is observed within a maximum error of 10%. 

Although the result would be satisfactory for most applications, further improvements 

might be sought to improve the following items: 

 

i) A lamination theory of first or higher degrees, which takes the shear 

deformations into account, could be used.  

ii) The damping effect could be added to the model. 

iii) A nonlinear analysis could be performed. 

iv) Different finite-elements with appropriate shape functions could be used to 

improve the FEM analysis. 

v) The objective function in the genetic algorithm part could be modified to include 

some other parameters other than just natural frequencies, or constraints, to 

improve the optimization results. 

vi) The genetic algorithm parameters themselves, such as mutation, crossover, 

etc.,could be adjusted or supported with some intelligence like fuzzy and/or 

neural nets to get more effective solutions in the optimization.   
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