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ABSTRACT 

 

Features extraction is important for electromyography (EMG) signal analysis. The 

paper’s objective is to evaluate the features extraction of the EMG signal. The 

experimental set-up for EMG signal acquisition followed the procedures recommended 

by Europe’s Surface Electromyography for Non-invasive Assessment of Muscle 

(SENIAM) project. The EMG signal’s data were analysed in the time domain to get the 

features. Four features were considered based on the analysis, which are IEMG, MAV, 

VAR and RMS. The average muscle force condition can be estimated by correlation 

between the EMG voltage amplitude with linear estimation with the full-wave 

rectification method. The R-squared value determined the correlation between the EMG 

voltage amplitude with the loads. IEMG was chosen as the reference feature for 

estimation of the muscle’s force due to its R-squared value equal to 0.997. By referring 

to the IEMG, the linear equation obtained from the correlation was used for estimation 

of the muscle’s force. These findings can be integrated to design a muscle force model 

based on the biceps muscle.  
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INTRODUCTION 

 

Electromyography (EMG) is a one-dimensional time series signal of the electrical 

muscle activity that reflects the physiology of the neuromuscular system upon a certain 

excitation. The technique of detecting, processing and analysing EMG signals is known 

as electromyography. It is becoming one of the most important physiological signals 

now being widely studied and used in clinical and engineering applications. However, 

the intention of using these signals in the field of information technology is still new. 

This signal is commonly a function of time and is definable in terms of its amplitude, 

frequency and phase [1, 2]. EMG is a complex signal affected by many aspects such as 

physiological and anatomical properties and characteristics of the instrumentation. It is 

different from one person to another. Understanding the EMG signals involves 

understanding the skeletal muscles and the methods used to generate the biosignals. It 

also involves consideration of the specific mechanisms and phenomena that affect the 

signals [3]. The EMG signals are helpful in real-time monitoring. They include real-

time information about the electrical activity of a particular muscle which is related to 
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the muscle’s force. The correlation between EMG signals and muscle force has been 

reviewed during isometric contractions and dynamic contractions. Many methods and 

approaches to modelling for computing the muscle’s force have been suggested, but 

these models could not be validated due to the lack of an accurate and efficient 

experimental procedure to compute the muscle’s force [4-6]. Recently, most muscle 

coordination is reviewed from the surface EMG activity.  

Non-invasive measurement is one of the techniques that have been used in 

computing the surface muscle’s activity. It is important due to its ability to support 

many critical biomedical applications for monitoring, diagnostics and therapies [7]. 

Surface EMG (sEMG) is a non-invasive measurement, which means a procedure that 

does not involve tools that break the skin or physically enter the body. In other words, 

sEMG is a result derived in space and time of electrical activities in muscles under the 

skin. The applications of sEMG signals are included in rehabilitation and assistive 

technology. The most important application of the sEMG signal in these fields is to 

control a prosthesis or other assistive equipment by applying different patterns of sEMG 

signals. Furthermore, the EMG signal is a sequence of voltages recorded from a 

contracting muscle over time. The potentials are recorded in the voltage field generated 

by active muscle cells or fibres of a contracting muscle [8]. The amplitude of the sEMG 

signal depends on the muscle type and condition during the observation process and it is 

in a range of about µV to mV.  

There are two main types of electrodes that are used to measure and record the 

EMG signals: needle and surface electrodes. The selection of electrode depends on the 

purpose and application of the experiment to be carried out. For clinical usage, in-

dwelling electrodes such as concentric needle, monopolar needle and single-fibre needle 

electrodes are used to measure the EMG signals. Needle electrodes are inserted directly 

into a muscle and are able to measure EMG activity in deep muscles. However, this 

may cause some pain when inserted into the muscle. Needle electrodes can be difficult 

to position suitably within a muscle and may move during muscle contraction. 

Generally, signals measured via needle electrodes are known as intramuscular EMG 

signals or more specifically known as needle EMG signals [8-11]. Meanwhile, surface 

electrodes are used in non-invasive application. They are applied to the skin overlying a 

muscle. The use of surface electrodes is recommended by the Surface 

Electromyography for the Non-Invasive Assessment of Muscles (SENIAM) project. 

The SENIAM project is a European concerted action in the Biomedical Health and 

Research Program (BIOMED II) of the European Union [12]. They are convenient and 

easy to use and do not cause pain. Signals that are measured via the surface electrodes 

are known as surface EMG (sEMG) signals. The sEMG signals do not provide much 

information about the deep muscle activity. This is because of the filtering 

characteristics of the conductive properties of the overlying muscles and other 

subcutaneous tissues, even though they are easy to detect. The sEMG signals are helpful 

for diagnostic purposes because they can be used to get detailed temporal and spatial 

information about the fibres of a motor unit [8].  

This paper aims to evaluate features extracted from sEMG signals on the biceps 

brachii muscle during specific exercises in lifting the arm. This research describes the 

signal processing for single channel sEMG signals on the biceps brachii muscle. The 

sEMG signals are then analysed and their amplitude is estimated with the muscle’s 

force.  
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METHODS AND MATERIALS 

 

Experimental Procedures 

 

In a pre-experiment, the subject must undergo skin preparation procedures. If the 

skin preparation is done properly, the skin typically gets a light red colour that indicates 

a good skin impedance condition. After skin preparation, the skin impedance is then 

measured. The Ohm-resistance between the electrode pair is measured to verify the skin 

impedance. This experiment is to consider the skin impedance. Table 1 shows the skin 

impedance reference value of the Ohm-resistance measurement. The quality of an EMG 

measurement strongly depends on proper skin preparation and electrode positioning. 

The aim of skin preparation is to get a stable electrode contact and low skin impedance. 

Selection of the electrodes depends on the practical condition and specific aim. In this 

paper, the non-invasive measurement was used for acquiring the sEMG signal. Surface 

electrodes are used to measure the EMG of a superficial large muscle. They are non-

invasive, easy and convenient to use in a laboratory environment. The EMG signal 

originally initiates from the action potentials of motor units and passes through muscle, 

skin tissues, electrode–skin interface, amplifier and recorder. These specific mediums 

and stages act as different filters that change the amplitude and frequency of the original 

signal from the motor units. 

 

Table 1. Skin impedance reference value for the Ohm-resistance measurement. 

 

Impedance range (kOhm) Recommendation 

1 – 5 Very good condition 

5 – 10 Good and recommended if feasible 

10 – 30 Acceptable for easy condition 

30 – 50 Less good, attention is needed 

>50 Should be avoided or requires a second cleaning run 

 

Figure 1 shows the overall work of the proposed study. The EMG signals were 

recorded using three electrodes: two electrodes for recording the EMG signal and one 

electrode as a reference electrode. The electrodes were placed on the right forearm 

biceps brachii muscles of a healthy subject. The placement of the sEMG electrodes on 

the skin is according to SENIAM. This experiment was done in a quiet room to 

minimize the noise and get better signals [7, 13]. The subject was standing up straight to 

get a straight and upright posture, as shown in Figure 1(a). Data for this experiment 

were recorded continuously. These data were to be used for estimating the average 

muscle force at the biceps brachii muscle. The subject was required to lift his hand 

freely without load and then with loads of 2 kg, 4 kg and 6 kg. The repeatability for 

each load is 30 times. Thus, the subject was supervised by an instructor to lift his hand 

without load and with a dumbbell load of 2 kg, 4 kg and 6 kg. Six kg is considered the 

maximum load that a normal and healthy person, male or female, can lift using a 

dumbbell with a single hand. A person with a dominant right hand was chosen for this 

experiment. This was in order to minimize interference by signals from the heartbeat 

and electrocardiogram (ECG). During the experiment, the right hand of the subject was 

lifted from θE = 0⁰ to θE = 145⁰ measured at the elbow joint, where 145⁰ is the 

maximum range of flexion. The subject lifted his hand with the specified weights, 

starting from no load to the heavier weights. The subject lifted the load from θE = 0⁰ in 
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2 seconds and held it at θE = 145⁰ for 6 seconds; then lowered back the load to θE = 0⁰ 
in 2 seconds, as shown in Figure 2. Holding the load for a period of 6 seconds ensures 

that the EMG signals are reaching their maximum amplitude. During the experiment, 

the subject should not move his shoulders but only lift the load by using his hand. 

Figure 1(b) shows the position of the hand during flexion. The subject had 5 minutes of 

rest when changing from one weight of load to another in order to avoid muscle fatigue. 

 

 

 

  (a)              (b) 

Figure 1. The experimental set-up: (a) electrodes placement; (b) position of hand during 

flexion. 

 

 
Figure 2. Movements of the subject. 

 

Subject 

 

A normal and healthy male subject participated in this study. The subject was selected 

according to the dominant hand; right-handed, and weight; above 60 kg. The subject 

was a volunteer and had signed a consent form before the experiment was conducted. 

The consent form is a statement signed by the subject which acknowledges that the 

subject is a volunteer, understands and is aware of the consequences of the experiment 

that will be conducted. This is as a precaution should anything happen to the subject 

after the experiment. 

 

System Design 

 

This experiment uses a basic system for acquiring biosignals. Starting from the 

electrodes, data acquisition until signal processing was designed. The system design 
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includes the sEMG self-adhesive silver-silver-chloride (Ag/AgCl) surface electrode 

used as a transducer to capture the EMG voltage signal. It was attached to the biceps 

brachii muscle on the right hand. Ag/AgCl electrodes are chosen because their half-cell 

potential is closer to zero than other types such as silicon rubber electrodes. Three 

Ag/AgCl electrodes were used in this experiment for the subject. Independent 

measurement can be obtained from the hand movement without moving the shoulder. 

The EMG signal captured from the surface electrodes was then digitized by the sEMG 

data acquisition system; TeleMyo 2400T G2 (Noraxon, USA). The sEMG data 

acquisition system is used to record EMG signals from the subject. The EMG signals 

were obtained by using the TeleMyo 2400T G2 Transmitter, which sends the signals by 

wireless transmission to the TeleMyo PC-Interface Receiver, which forwards the data 

via USB to the computer at a sampling rate of 1500 samples per second. A computer 

was used as a digital signal processing system, including digital rectification and 

features extraction. 

 

PROCESSING THE EMG SIGNAL 

 

Rectification 

 

The recorded data of the raw EMG signals contain very important information and may 

be used as the first objective information and documentation of the muscle. The EMG 

signals consist of positive and negative phases that change about a baseline of zero 

voltage (isoelectric line). Rectification is important due to the fluctuation characteristic 

of the EMG signal about zero value. The implementation of the rectification is done via 

taking the absolute value of the sEMG signal, which is inverting the negative phases. In 

this study, the raw data of sEMG signals were rectified via the full-wave rectification 

method. This method used Eq. (1) to fully rectify the raw data of the sEMG signals. 

 

xy ii
                                              (1) 

 

Time Domain Features Extraction 

 

Features in the time domain have been widely used in medical and engineering practices 

and researches. Time domain features are used in signal classification due to their 

performance in signal classification in low noise environments, their lower 

computational complexity, and easy and quick implementation. Furthermore, the 

features are calculated based on raw EMG time series. The time domain features assume 

the data as a stationary signal [14]. Moreover, much interference that is acquired 

through the recording because of their calculations is based on the EMG signal 

amplitude. Four time domain features have been proposed in this study through an 

extensive review of the literature.  The information on statistical features extraction for 

the EMG signals was done in MATLAB R2011a. Four statistical features from the time 

domain are used in the evaluation, as follows: 

 

 Integrated EMG (IEMG): 

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 Mean absolute value (MAV):  
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 Variance (VAR): 
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VAR 2

1

1                                                                   (4) 

 

 Root mean square (RMS):  
N

i
ixRMS 2                                                       (5) 

 

RESULTS AND DISCUSSION 

 

Characteristics of EMG Signal 

 

The EMG data in this study are measured during hand lifting without load and with 

dumbbell loads of 2 kg, 4 kg and 6 kg. Figure 3 shows the raw EMG signals during the 

experiment. As can be observed in Figure 3, when the muscle contraction was 

maintained for a long period, the EMG signal amplitude decreased. This proves that the 

EMG signal is a non-stationary signal and the frequency of the signal changes over 

time. Furthermore, the relationship between changing in force during muscle 

contraction and increasing of load can be observed in Figure 3. The amplitudes of the 

EMG signals increase as the load increases. The amplitudes of the EMG signals for the 

6 kg load as shown in Figure 3(d) are higher than for 4 kg, while the amplitudes of the 

EMG signals for the 4 kg load as shown in Figure 3(c) are higher than the signals 

obtained when lifting the hand with a 2 kg load and no load. The amplitudes of EMG 

signals for no load have been selected as the reference amplitudes of the EMG signals in 

this experiment. Figure 3 shows that the EMG signals reach the maximum amplitude at 

the early stage of the recorded signal. This shows that the muscle contraction is high 

when the subject starts to lift the load, whereas the EMG signal amplitude decreased at 

the last stage of the recorded signal when the subject was lowering the load in order to 

release it [7]. 

 

0 2 4 6 8 10 12 14 16 18 20

-0.5

0

0.5

A
m

p
li
tu

d
e

 (
m

V
)

Time (secs)

 

 

 
(a) 

0 2 4 6 8 10 12 14 16 18 20

-0.5

0

0.5

A
m

p
li
tu

d
e

 (
m

V
)

Time (secs)

 

 

 
(b) 

0 2 4 6 8 10 12 14 16 18 20

-0.5

0

0.5

A
m

p
li
tu

d
e

 (
m

V
)

Time (secs)

 

 

 
(c) 

0 2 4 6 8 10 12 14 16 18 20

-0.5

0

0.5

A
m

p
li
tu

d
e

 (
m

V
)

Time (secs)

 

 

 
(d) 

Figure 3. Raw EMG signals for: (a) no load; (b) 2 kg; (c) 4 kg; (d) 6 kg load. 

 

Assessing the EMG Features 

 

The EMG signals were analysed in the time domain to get the features. Overall, four 

time domain features were selected and analysed from the biceps brachii muscle for 

load lifting, namely IEMG, MAV, VAR and RMS. The average value from the load 

lifting with repeatability of 30 times was calculated. The purpose of this was to obtain 
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the correlation between the EMG voltage amplitude and the loads. Table 2 shows the 

average value of time domain features for four different loads obtained from the EMG 

signals. As can be observed in Table 2, the values of the statistical features for the EMG 

signal differ for each load. The differences in the statistical feature values show that the 

EMG signals vary according to the changes of load. The statistical features increased 

when the load increased. The maximum amplitude of the EMG signals increased as the 

load increased. This is because more force is needed to lift the load when the load 

increases. From Figure 4, we can see the relationship between changes in load and the 

time domain features. Overall, the value of the features increases due to the increasing 

of the EMG signal amplitude according to the increasing weight of load. The results 

show that the value of the features differs between the different loads. This can be used 

to classify the EMG signal according to the time domain features and weight of loads 

[15, 16]. 
 

Table 2. Average value of time domain features for four different loads. 

 

 Time domain features (mV) 

IEMG   MAV VAR RMS 

Load (kg) 0 149.2 7.6x10
-3 

1.204x10
-4

 0.011 

2 302.2 0.014 4.969x10
-4

 0.022 

4 462.5 0.024 1.57x10
-3

 0.039 

6 652.2 0.030 3.28x10
-3

 0.057 

R-squared (R
2
) 0.997 0.994 0.926 0.99 

 

 
Figure 4. Relationship of time domain features with load: (a) IEMG; (b) MAV; 

(c) VAR; (d) RMS. 

(a) (b) 

(c) (d) 
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It can be seen in Table 2 and Figure 4 that the correlations between loads and 

EMG voltage amplitude of all features are almost linear, with R-squared values near to 

1.00, which means that the correlation is good. Based on the results, IEMG shows the 

greatest linear correlation between loads and EMG voltage amplitude. The IEMG has an 

R-squared value that is equal to 0.997. The system will use IEMG as the reference 

feature to estimate the muscle’s force. By using the full-wave rectification method, the 

average muscle force can be estimated using Eq. (8) [15]. 
 

8.2593.166  xy                                         (6) 

 

By comparing the y-axis and x-axis, 

 

8.2593.166  FV                                         (7) 

 

Hence, 

 

155.0006.0  VF                                         (8) 

 

for muscle force with loads of 0 kg, 2 kg, 4 kg and 6 kg.  

 

In Eq. (8), V is the EMG voltage and F is the average muscle force. Note that 

this force should be multiplied with the gravity coefficient, g [15]. This means that 

when V is 200mV, then F is 0.1558g Newton for the fully rectified method. 

 

CONCLUSIONS 

 

This study is targeted for researchers to look into the details of the features that can be 

extracted from the EMG signal during hand-lifting of four different loads. It is intended 

to allow for better interpretation of EMG signals analysis in the time domain. Four 

features have been extracted from the EMG signals: IEMG, MAV, VAR and RMS. 

Furthermore, the average muscle force condition can be estimated by the correlation 

between the EMG voltage amplitude with linear estimation with the full-wave 

rectification method. The R-squared value determined the correlation between the EMG 

voltage amplitude with the loads. IEMG was chosen as the reference feature for 

estimation of the muscle’s force because of its R-squared value equal to 0.997. By 

referring to the IEMG, the linear equation obtained from the correlation was used for 

estimation of the muscle’s force. These findings could be integrated to design a muscle 

force model based on the biceps.  
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