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ABSTRACT 

 

Hybrid systems are dynamic systems that arise out of the interaction of continuous state 

dynamics and discrete state dynamics. Switched systems, which are a type of hybrid 

system, have been given much attention by control systems research over the past 

decade. Problems with the controllability, observability, converseability and 

stabilizability of switched systems have always been discussed. In this paper, the trend 

in research regarding the stability of switched systems will be investigated. Then the 

variety of methods that have been discovered by researchers for stabilizing switched 

linear systems with arbitrary switching will be discussed in detail. 
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INTRODUCTION 

 

Switched systems are made up of a collection of linear subsystems with rules that 

govern the switching between these subsystems (Sun & Ge, 2005). The switching law 

may be either supervised or unsupervised, and time-driven or event-driven (Ge, 

Zhendong, & Lee, 2001). Switched systems exist in many practical applications, for 

example in control systems for gear transmissions, airplanes, traffic control and also for 

switching power in the electric industry (Liberzon, Hespanha, & Morse, 1999). Much 

research has been done with regard to switched systems. These encompass the concept 

of system controllability, observability and also the stabilizability of a switched system.  

 

Given a linear time invariant system (Gopal, 2003) 

  

 ̇( )    ( )    ( ) 
 ( )    ( ) 

 (1) 

 

where      and   are a matrix          and     respectively,  ( ) which     is 

a state vector,  ( ) and  ( ) are the input and output of the system. The system is said 

to be controllable when input   is able to transfer the initial state  ( ) to another state 

 ( ) in finite time. For a switched system, the system is said to be controllable if at the 

initial time and state a switching sequence exists that leads the state vector to the final 

state within a finite interval. The system is also said to be observable, given any 
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switching sequence within a finite interval, in which the initial state can only be 

determined using the output vector. In other words, by utilizing the output vector of the 

system it is not impossible to determine the behavior of the whole system (Sun & Ge, 

2005). This state can be simplified to; if state vector      is controllable/ reachable/ 

unobservable at time   , then   is controllable/reachable/unobservable at any arbitrary 

given instant of time.  

Extensive research with regard to the controllability of continuous-time and 

discrete-time linear switched systems has been carried out by Ge, Zhendong, and Lee 

(2001) and Yijing, Guangming, and Long (2003) respectively for its geometric 

characterization. Even though this definition was constructed by only taking into 

consideration a single input, Guangming, Dazhong, and Long (2002) has however 

proven that the controllability of a multi-input system is equivalent to that of single-

input systems. It was later proved by Guangming and Long (2002) that for switched 

linear systems, a basic switching sequence exists such that the controllable state set of 

this basic switching sequence is equal to the controllable state set of the system. In 

contrast, a different emphasis of research was taken by Vu and Liberzon (2006), who 

were interested in a new issue in switched systems. They focused on the invertibility 

problem of a pair of subsystems for continuous-time linear switched systems. With 

information on the initial state and the output state, the switching signal and input state 

can be recovered. By introducing the concept of singular pairs for two systems in 

discrete and continuous states, an algorithm was presented for determining switching 

signals and inputs that generate a given output in a finite interval, when there is a finite 

number of such switching signals and inputs. However, this paper focuses on the 

stability of switched systems with subsystems which comprise of continuous-time linear 

systems. The discussion will also only take into account switched systems with arbitrary 

switching.   

  

STABILITY OF SWITCHED SYSTEMS 

 

Stability can be defined when all of the controllable state variables have stable 

dynamics, or if there are non-controllable state variables then all the state variables 

always remain within the boundaries of system behavior. In research on the analysis of 

the stability of switched systems, the scenario is that most researchers have the tendency 

to make conclusions on the behaviors of the switched systems without any theoretical 

application in finding the solutions of a hybrid system.  

 There are studies on the stability of switched systems that began with interpreting 

algorithms in the form of difference equations for continuous-time systems and 

differential equations for discrete-time systems (Brayton & Tong, 1979, 1980). 

However, the main idea in the study of stability within hybrid systems is that when a 

Lyapunov function can be created from each subsystem, and by adjusting it with the 

switching mechanisms of the system, the stability of the switched system can be 

achieved. Extracting from Zhu, Cheng, and Qin (2007), and taking into account linear 

switched systems 

 

 ̇    ( )   (2) 

 

where  ( ) [    )    is a continuous function with   {       }.  
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To ensure the stability of the switched system in Eq. (1) with arbitrary 

switching, the common quadratic Lyapunov function (CQLF) is sufficient. The common 

quadratic Lyapunov function,     , with a positive definite matrix ,     is called the 

CQLF to {  |   } if 
 

      
            . (3) 

 

Referring to Lyapunov (1992), the Lyapunov stability or    occurs when all 

solutions for a particular dynamic system that start near the equivalent point    remain 

in that position of close proximity. The robustness of the stability is further increased 

when all the solutions starting near    approach     also known as being 

asymptomatically stable. This theorem is also supported by Martin and Dayawansa 

(1996) for switching within finitely linear systems with arbitrary switching, in which the 

asymptomatic stability for all switching paths is equivalent to the common Lyapunov 

function for all of the subsystems in the family. However, researchers face a difficulty 

in finding the upper bound of the degree of the system. This is following the expression 

of an example that shows that the Lyapunov function fails to form a CQLF. This 

theorem is also used by Jianhong, Xun, Yaping, and Guangfeng (2008) for linear time-

invariant systems, by using the LMI optimization approach to determine the CQLF. In 

addition to this discovery, King and Shorten (2004) stated that for a group of stable and 

finite matrices   {       }, the CQLF will not exist if, and only if, all positive 

semidefinite matrices         do not equal zero, in which 

 

∑          
    

   . (4) 

 

Research by Dayawansa and Martin (1999) on linear switched systems and 

Mancilla-Aguilar and Garcia (2000) on nonlinear switched systems with arbitrary 

switching have proved that each system respectively is globally uniformly 

asymptotically stable and locally uniformly exponentially stable with the converse 

Lyapunov theorem. Frequently it is seen that the focus of most studies is given to the 

quadratic stability of the system compared to uniformly asymptomatically stability. 

Quadratic stability can be achieved when the Lyapunov function is quadratic in the state 

variable and is independent of time. Nonetheless, the overall stability of the system is 

very dependent on the parameters and time. A study conducted by Mason, Sigalotti, and 

Daafouz (2007) found entire criterion of the stability of a system are actually equivalent, 

which can be rephrased as quadratic stability need only be tested on the quadratic 

polytopic Lyapunov function. They then found that this definition is not applicable for 

discrete time switched systems. This discovery has enforced the theorem proven by Sun 

(2007) for continuous-time switched systems, in which uniformly asymptomatically 

stability does not fulfill the quadratic Lyapunov function. 

As an addition to the topic of stability behavior within switched systems, besides 

asymptomatic stability and quadratic stability, the input-to-state stability (ISS) is also an 

important property, though mainly for nonlinear systems. Due to the fact that the system 

might not overall be stable despite the stability of each subsystem, ISS becomes the 

preserver within the system in the efforts of achieving the overall stability of the whole 

system (Liberzon, Hespanha, & Morse, 1999). To enforce this theory, Wenxiang, 

Changyun, and Zhengguo (2001) identified the type of mode of every subsystem before 

the suitable controller and the durations of controller usage were distinguished using 

model method to ensure that the whole system is in the ISS. Nesic and Liberzon (2005) 
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then demonstrated the use of ISS small-gain theorems as a power extension to be used 

in hybrid systems. Further reference with regard to stability within systems with 

impulse effects can be found in Hespanha and Morse (2002), time-varying systems in 

Ezzine and Haddad (1988) and Qi, Guangming, and Long (2005), and time-delay in 

Dayawansa and Martin (1999). More information with regard to the analysis of 

stabilizability within switched systems in industries such as in the aircraft industry and 

the PI controllers of vehicles with automatic transmission can be found in Decarlo, 

Branicky, Pettersson, and Lennartson (2000), and in Brockett (1993) with regard to 

manual transmission.  

 

Multicontrollers  

 

In this method, the main aim is to construct a multicontroller system within a hybrid 

system. This multicontroller will be used and will effectively switch among the 

controllers for each subsystem, taking into account that a single controller is incapable 

of stabilizing the whole system with any switching sequence. Hespanha and Morse 

(2002) believe that if a multicontroller is chosen correctly then for every switching 

between subsystems it will be guaranteed to be uniformly exponentially stable. The 

system studied is the time invariant system. Each stable controller transfer matrix for 

every switching between subsystems will be mentioned and represented by equations in 

the form of Youla parameterization. This implies that switched systems will occur 

through certain parameters, compared to switching through a controller transfer matrix. 

The formation of multicontrollers in the form of the Youla parameterization must fulfill 

the Lyapunov function. This method of multicontrollers is also used by Stewart and 

Dumont (2006) for discrete time systems. 

  

 
 

Figure 1. Switching compensator (Blanchini, Miani, & Mesquine, 2008) 
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 Hespanha, Santesso, and Stewart (2007) raised a particular concern regarding the 

use of this technique: ‘Is this technique applicable for use in switched systems that 

possess an interconnection between the feedback loop and the multicontrollers? If it is 

applicable, then how do we obtain the initial state with the controller after it has 

transformed back into the feedback loop?’ Consequently, they introduced norm-

constraints in the optimization of the state-reset, in which a transient response will be 

produced which also preserves the (input to state) stability of the system. However, an 

argument raised by Blanchini et al. (2008) stated that the system that uses the Youla 

Parameter could not be arbitrary because it is already constructed. Therefore he 

introduce an extended controller device to the system with the Youla Parameter, called 

the switching compensator (consisting of an observer and a (dynamic) state feedback), 

as shown in Figure 1. This is supported by a polyhedral Lyapunov function based on the 

separation principle to fix the problem. However, all of them cannot provide the bounds 

for the system order, and it is highly computationally-demanding. 

 

Hurwitz Stability 
 

Referring to Eq. (2) with regard to guaranteeing the stability of switched systems within 

linear systems, the quest for finding the existence of a Lyapunov function is a 

conservative way of finding stability. Besides this method, Mason and Shorten (2003) 

conjectured that asymptomatic stability can be achieved in a positive linear system with 

arbitrary switching by testing the Hurwitz stability of the convex hull of a Metzler 

matrix set. The Hurwitz matrix is a square-structured matrix of     which is built 

together with a constant in a particular polynomial as follows   
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 According to Zhang, Shen, and Han (2008), there are two criteria to test the 

stability of Hurwitz. One of the indirect methods is by testing the Eigenvalue of the 

matrix, including computing its Jordan canonical function, calculating the invariant 

factors, etc. However it is not an easy task to complete these computations due to 

computational complexity. Another method deals with stability, directly based on the 

entries of a given matrix. This conjecture can be true for a system which is only 

constructed from a pair of second order Metzler matrices, and for a system which is 

constructed from the arbitrary finite number of second order Metzler matrices, while the 

conjecture is generally false for higher order systems (Gurvits et al, 2007). This 

assumption is also taken up by Guisheng, Derong, Imae, and Kobayashi (2006) for 

continuous-time systems, forming an algorithm based on Lie Algebra for which the 

system is exponentially stable with arbitrary switching.  
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State Transformation 

 

The state variable transformation method is a way of changing the initial state variable 

of the system to a new state that is capable of creating a stabilizing strategy for that 

system before the new state is changed back to its initial state. Davrazos and Koussoulas 

(2002) utilized the canonical form in canonical coordinates as a medium for searching 

for the stabilizing strategy for switched linear systems. The problem of stability for this 

system is interpreted by using a state feedback control in canonical composition. Then, 

a state estimator is introduced within the system to estimate the state variable to be sent 

to the feedback loop and to achieve the algorithm of the overall system before it is 

changed back to its initial state. The main objectives are to find the suitable control 

input and switching laws which guarantee that the system will be uniformly 

asymptomatically stable. Before the transformation process it has to be ensured that the 

system is controllable and observable. The system is only stabilizable if the state space 

matrices are Hurwitz or equivalent, and the unstable mode of the state space matrices is 

controllable. Further reading with regard to state transformation can be found in Geng 

(2010). 

 

Linear State Transformation 

 

Alternatively, Li, Wen, and Soh (2001) introduced a linear state transformation to find a 

stable convex combination for a class of switched systems. The linear state 

transformation will decompose each subsystem into stable and unstable parts; in which 

for each stable part a Lyapunov function naturally exists. Under some conditions 

imposed on the original switched system, the sum of these Lyapunov functions is shown 

to be a Lyapunov function for a convex combination of the whole switched system.  

 

State-Switched Transformation Using Differential Petri Nets 

 

Differential Petri Nets (DPN) is a simulation software which is the sequel for another 

simulation software called “Hybrid Petri Nets”, used for stabilizing switched linear 

systems (Davrazos & Koussoulaz, 2007). Petri Nets is a basic hybrid system controller 

configuration to control continuous switching transformation from an initial discrete 

event to an output discrete event from the continuous input signal and output signal 

(Moor et al., 2006). The state transformation introduced in Petri Nets, exploits the 

capability and the advantages of continuous type Petri Net models in representing 

continuous varying quantities in a discrete event setting by making use of the simulation 

mechanism. The stability analysis by the novel transformation of the equation in the 

DPN of discrete event systems compared with the state switched system in a DPN 

framework using switching hyperplanes was presented. The stability condition was 

achieved and expressed in Linear Matrix Inequalities (LMI). The analysis of stability in 

state-switched hybrid systems with state transition using DPN has been divided into two 

parts. The first part is to model the state-switched hybrid system by switching 

hyperplanes in the DPN framework and the second part concerns transforming the DPN 

fundamental equation into a linear switched system form.  

Figure 2 shows the model of the subsystem in DPN working plane form. 

Transition between the two different subsystems, expressed in the form of   and   as 

   
  ( )     is modelled in the DPN framework. The differential places      and      

are tested for the expression          . Alternatively, Figure 3 shows an example 
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of a DPN framework that has been formed into subsystems   and  . Further reading on 

this method can be found in Davrazos and Koussoulas (2002). 

 

 
Figure 2. Modeling of hyperplanes in DPN framework (Davrazos & Koussoulas, 

2007) 

 

 
 

Figure 3. Representation of a switched system in a DPN framework (Davrazos & 

Koussoulas, 2007) 

 

Stabilizing Switching Control Strategy 

 

Montagner, Leite, Oliveira, and Peres (2006), on the other hand, provided a convex 

design method for switching feedback gain for switched linear systems with arbitrary 

switching. A quadratic Lyapunov function with a common matrix is used to derive a 

stabilizing switching control strategy that, , for any arbitrary switching rule, guarantees: 
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 The location of the poles of each linear subsystem of a continuous-time switched 

linear system is inside a chosen circle within the left-hand half of the complex 

plane. 

 A minimum disturbance attenuation level for the closed-loop switched system. 

 

The features mentioned above are said to be important since the first will improve 

the dynamic response assigning the bounds for the overshoot, settling time and 

frequency of oscillation. It also will be able to ensure the robustness of a switched 

system facing energy signal disturbances. The appropriate LMI design condition based 

on the quadratic Lyapunov functions with a common matrix with very low numerical 

complexity is presented. This LMI condition is allowed to determine the switched state 

feedback gains that stabilize the closed loop system, including the pole location and the 

robustness of the system. The stability of the closed-loop switched system with a   

disturbance attenuation level and the pole location of each linear subsystem inside the 

circle  (     ) is visualized in Figure 4: 

 

 
Figure 4. Circular region  (     ) for pole location (Montagner et al., 2006) 

 

Lie Algebra 

 

Another popular method in the study of the stability of switched systems is the use of 

Lie Algebra, derived from a stable linear system. Lie Algebra is an algebraic structure 

that is usually used when learning of geometrical objects. Liberzon, Hespanha, and 

Morse (1999) conjectured that if the Lie Algebra generated from matrices of stable 

linear time invariant systems is nilpotent (which means that the Lie brackets of 

sufficiently high order equal zero), then the system is asymptotically stable for any 

switching signal. They have proved their conjecture to be true for two subsystems for 

third-order Lie brackets. The Lie bracket referred to here is the vector space in a 

particular graphic space in a binary operation. Further research has been carried out by 

Agrachev and Liberzon (1999), who discussed the subject by showing that an arbitrary 

switching system will be exponentially stable if the Lie algebra is solvable. Zhu, Cheng, 

and Qin (2007), however, claim that most methods for achieving stability using Lie 
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Algebra are not solvable. Hence they proved that by combining Lie Algebra with the N-

B structure and also the CQLF, a new mathematical structure can be formed that offers 

a solution for the stability problem, which was unachievable through previous studies.

  

 

Haris et al. (2007) Method 

 

This method was suggested to guarantee the quadratic stability of a switched system 

which consisted of second order subsystems. The aim is to find the existence of a set of 

feedback control laws        that share CQLF,      in the subsystems. The 

subsystem is transformed to Brunovsky controllable canonical form to determine the 

existance of CQLF. If existing, it guarantees the stability of the switched system. The 

feedback controller,    from the feedback control law can be found by solving two sets 

of linear inequalities (LI) in the original plane. The LI is     where   and   are 

variables. The stability of a switched system is proven when the Lyapunov function in 

Eq. (3) is negative definite, which defines   as a common Lyapunov function.  

 

DISCUSSION 

 

The stability of switched systems can be achieved by various methods. Among the 

approaches that can be used are mathematical and geometrical methods, the use of 

simulation software or the implementation of strategies across the system. Even though 

the method shown is focused on continuous linear systems with arbitrary switching, this 

method can be further explored in greater detail according to the type of system studied. 

Each system studied has been interpreted into mathematical equations or inequalities. 

The mathematical equations are then used to prove the algorithms created. A few 

questions do arise from this discussion. Will the equations and inequalities be solvable 

if the algorithms were later applied for use in industry and the field of education? Will 

computerized calculations be able to solve the problems faced? And what is the most 

suitable software to actually solve this problem?    

  The method using Youla parameterization is highly computationally demanding. 

Computing the Hurwitz stability by solving the Eigenvalues in the Jordan canonical 

function is complicated when using a computerized system. Hence it has been proved 

by Zhang, Shen, and Han (2008) that it failed when used for higher order systems. 

Furthermore, determining the stability using the state transformation method by 

Davrazos and Koussoulas (2002) can only be solved if the state matrix is Hatwitz. Most 

Lie Algebra cannot be solved unless combined with N-B structures and CQLF. On the 

other hand, Montagner et al. (2006) used simple mathematics to determine the CQLF 

that guaranteed the stability of a switched system. 

 

CONCLUSION 

 

To summarize, most of the suggested method are actually very computationally 

demanding for solving the problems. As a solution to this problem, research is needed to 

test the computational demand when determining the feedback controller that 

guarantees the stability of a hybrid system. A new algorithm needs to be introduced 

which it is guaranteed to be less computationally demanding.  
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