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ABSTRACT 

 

Everything in the universe that has mass possesses stiffness and intrinsic damping. 

Owing to the stiffness property, mass will vibrate when excited and its intrinsic 

damping property will act to stop the vibration. The particle impact damper (PID) is a 

very interesting damper that affects impact and friction effects of particles by means of 

energy dissipation. PID is a means for achieving high structural damping by using a 

particle-filled enclosure attached to a structure. The particles absorb the kinetic energy 

of the structure and convert it into heat through inelastic collisions between the particles 

themselves and between the particles and the walls of the enclosure. In this work, PID is 

measured for a cantilever mild steel beam with an enclosure attached to its free end; 

copper particles are used in this study. The PID is found to be highly nonlinear. The 

most useful observation is that for a very small weight penalty (about 7% to 8 %), the 

maximum damped amplitude of vibration at resonance with a PID, is about 9 to 10 

times smaller than that without a PID. It is for more than that of with only intrinsic 

material damping of a majority of structural metals. A satisfactory comparison of 

damping with and without particles through experimentation is observed. The effect of 

the size of the particles on the damping performance of the beam and the effective 

packing ratio can be identified. It is also shown that as the packing ratio changes, the 

contributions of the phenomena of impact and friction towards damping also change. It 

is encouraging that despite its deceptive simplicity, the model captures the essential 

physics of PID. 
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INTRODUCTION 
 

A particle impact damper (PID) is an enclosure partially filled with particles. When the 

structure vibrates, particles in the cavity collide with each other and with the enclosure 

boundaries, causing damping through inelastic or nearly inelastic collisions. Such 

additional damping and mass modify the dynamic response of the primary system. The 

use of damping to control structural vibrations has been well documented (Beranek, 

1971). Damping treatments are particularly useful for cases of harmonic excitation 

resulting in resonant or near-resonant response, broadband excitation resulting in a 

response dominated by resonant modes, and impact-excited free vibration resulting in 
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undesirable and detrimental transient response. Damping treatments are used for noise 

reduction, fatigue reduction, vibration isolation, and absorption of impact energies. 

Traditional damping treatments use viscoelastic materials to convert strain energy into 

heat energy through the internal movements of long, intertwined molecules. Their 

primary disadvantage is that their properties depend on temperature, frequency, and 

strain; thus, they are difficult to use in environments with extreme temperatures or 

temperature gradients (Bell & Bell, 1994). The earliest known work on the subject deals 

exclusively with impact dampers. An impact damper was studied for controlling aircraft 

flutter, fatigue, and vibration. Researchers assumed that two impacts occurred per cycle 

and they found that the maximum damping occurred if the phase angle between the 

motion of the auxiliary and primary mass was 180° (Lieber & Jensen, 1944). Two 

solutions for the motion of an impact damper were derived. The first describes the 

motions of the auxiliary and primary mass completely, which must be solved 

numerically after the first impact. The second solution assumes steady-state motion and 

is not complete. However, the two solutions agree with each other for a sufficiently 

large number of collisions. It was also found that the impact damper is most effective at 

resonance, and that by increasing the coefficient of restitution at resonance makes the 

damper more efficient. No experiments were performed to verify the solutions 

(Gurubin, 1956). Grubin’s work was followed by an alternative method of obtaining a 

steady-state solution for the impact damper. This was done by modifying the disturbing 

force to have a phase component, which allows an impact at the right end of the 

container to occur at t = 0. Both Warburton and Grubin assumed that two impacts 

occurred per cycle; an assumption that was later found true only under special 

circumstances (Warburton, 1957). One used three different materials to coat the 

impacting plates in their impact dampers. The three materials were aluminum, nylon, 

and rubber-coated aluminum. The enclosure was excited with a sine wave and it was 

found that the softer materials had a lower coefficient of restitution and provided a 

smaller amount of damping at resonance (Valuswami & Crossley, 1975). The effects of 

gravity on impact dampers were examined and it was found that the dampers performed 

best under “zero gravity” conditions, i.e., when the damper was excited in a direction 

perpendicular to action of gravity. The dampers are most effective when two symmetric 

and equal impacts occurred per cycle and the effect of gravity caused the impulses at the 

ends of the container to be of unequal magnitude. The effect of gravity can be overcome 

if the acceleration of the enclosure is sufficiently high. This can be accomplished either 

by increasing the magnitude of the excitation force or by increasing the frequency of 

excitation (Sadek & Williams, 1970). An impact damper was attached to the end of a 

cantilever beam and studied for both the transient-free decay and the steady-state forced 

vibration response. The transient-free decay showed an initial linear decay of vibrations, 

followed by an exponential decay after a considerable decrease in vibration. The linear 

decay corresponds to the damping by the impact damper, and the exponential decay 

corresponds to the damping inherent to the beam. This also shows that the impact 

damper ceases to work once acceleration amplitudes fall below a certain level. Forced 

vibration tests revealed an optimum gap size, which was a function of displacement 

amplitude and frequency. The gap size is simply the distance between the top of the 

particle bed and the ceiling of the enclosure (Bapat & Sankar, 1985). These same results 

were later confirmed independently in an experiment with an impact damper attached to 

a leaf spring with a mass (Ema & Marui, 1994). Eight different types of enclosure were 

investigated, including plastic bags, metal boxes, plastic boxes, and bags with an 

internal framework. It was found that the most effective enclosure was a hard plastic 
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bag, which provided a coefficient of restitution near zero, quiet operation, and the 

second-highest loss factor. The metal box provided the highest loss factor, but it was 

accompanied by a high noise level and great sensitivity to the amount of clearance given 

to the particles. The response of the hard plastic bag was largely insensitive to gap size 

(Cempel & Lotz, 1993; Mitra, Sahoo, & Saha, 2012). Sensitivity to clearance was also 

investigated while studying different combinations of particle sizes. It was found that 

using a greater number of smaller particles resulted in less sensitivity to clearance. 

Unfortunately, the smaller particles were also less effective. However, an optimum 

clearance was still found for all cases (Papalou & Masri, 1998). A series of experiments 

was performed designed to identify those design parameters that were most important 

for maximum damping. Seven different particle types of differing materials, sizes, and 

shapes were tested. It was discovered that particle damping has strong dependence on 

excitation amplitude, clearance, particle size, attachment location, and mass. There was 

weak dependence on particle shape. The majority of experimental work involving PIDs 

has used harmonic structural excitation (Hollkamp & Gordon, 1998). However, both 

performed tests using random structural excitation. Papalou and Masri (1996) mounted 

a particle damper on an equivalent single-degree-of-freedom system. The damper 

dimensions could be changed by using four adjustable brackets. The authors reported 

that the effect of the container’s dimensions seemed noticeable only when the ratio of 

the particle mass to the primary system mass was high. They also reported that a low 

mass ratio is beneficial when the damper movement is low. This stands in stark contrast 

to many other authors who all reported that a high mass ratio is beneficial, regardless of 

the damper movement (Panossian, 1991; Papalou & Masri, 1996). Some authors have 

investigated particle damping as a means of fatigue reduction. A cantilever beam with a 

particle-filled enclosure attached to its free end was used for experimentation, in which 

damping was considered in the horizontal plane (perpendicular to gravity). It was 

noticed that damping was dependent on the clearance between the particles and the 

enclosure. The characteristics of the particle damping in transient vibrations have been 

discovered and simulated. It has been established that particle damping is a combination 

of the impact and friction damping. Furthermore, it has been shown that the 

displacement amplitude in the particle damping decreases linearly until the free 

vibration of the structure reaches a level below which no impact occurs (Mao, Wang, 

Xu, & Chen, 2004). Computer simulation results were presented and used to investigate 

the damping performance of a single particle vertical impact damper over a wide range 

of excitation frequencies and amplitudes, particle-to-structure mass ratios, lid clearance 

ratios, structural damping ratios, and coefficients of restitution. Measurements of the 

damping performance, particle flight times, and structure contact times were presented. 

The performance of both the structure’s undamped natural frequency and the off-

resonant conditions were studied in depth. Maximum damping at a fixed oscillation 

frequency occurred at an optimal lid height that increased with increasing mass ratio 

and increasing structural damping ratio, but decreased with coefficient of restitution. 

The corresponding maximum degree of damping increased with increasing mass ratio 

and coefficient of restitution, but decreased with increasing structural damping ratio. 

Field plots of the damping ratio were also presented as functions of oscillation 

amplitude and frequency, to demonstrate the damper performance over a range of 

design parameters and operating conditions (Duncan, Wassgren, & Krousgrill, 2005). 

The work involved multi-unit particle dampers, which are passive damping devices 

involving granular particles in some cavities of a primary system. The principle behind 

particle damping is the removal of vibratory energy through losses that occur during the 
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impact of the granular particles. This paper presents the results of experimental and 

analytical studies of the performance of a multi-unit particle damper in a horizontally 

vibrating system. An analytical solution based on the discrete element method is 

presented. Comparison between the experimental and analytical results shows that 

accurate estimates of the rms response of a primary system can be obtained. It is shown 

that the response of the primary system depends on the number of cavities and the 

cavity dimensions (Saeki, 2005). In this paper, the effect of the size of the particles and 

the packing ratio of the PID on damping performance of the beam is studied. It is shown 

experimentally that the most effective size of particles is 1 mm for the given set up, and 

that the effective packing ratio changes as per the condition of location, amplitude, and 

frequency of excitation. 

 

EXPERIMENTAL DESIGN 

 

A method is developed to find the effective size of particles and the packing ratio for a 

PID. Four sizes of particles: 1, 2, and 3 mm in diameter, and dust of copper material 

were selected for the study and for every size, the packing ratio was changed from 0% 

to 100% in steps of 25%. To find an effective size of particle and to study the effects of 

packing ratio on damping performance, a cantilever beam of mild steel was selected. 

The physical parameters of the beam were: 450 × 41.5 × 5.63 mm, Young’s modulus of 

200 GPa, density of 7594 Kg/m
3
, and moment of inertia of 617.15 × 10

-12 
m

4
. This beam 

was fixed to the M.S. frame of 50-mm width, which gave a free length of 400 mm 

available as the cantilever beam. Three enclosures of differing diameters and heights 

were made of aluminum. The most effective enclosure of the three was found for a 

particular amplitude of excitation and low frequency range. The internal diameter and 

maximum internal height, expressed in millimeters, were 52 and 35, respectively, and 

the mass of that enclosure was 134.2 g. Copper particles were used for the study with an 

effective mass of 55 g. The effective location was selected as the free end of the 

cantilever. The essential data required were achieved with the following formulae and 

for that, a mathematical beam model was formed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (a) Schematic of beam and enclosure, (b) model of beam with end mass me, 
(c) mathematical model equivalent to single degree of freedom. 

L 

W 
Le 

g 

1(a) 

1(b) 

x 

me 

K c 

M 

 mp 

d 
z, u 

 1(c) 



 

 

Kachare and Bimleshkumar / Journal of Mechanical Engineering and Sciences     4(2013)     505-517 

 

508 

 

A cantilever beam, as shown in Figure 1(a), having length L with known cross section 

was taken for study. The beam was idealized as a standard Euler-Bernoulli beam and 

the enclosure was assumed as a point mass attached to the end of beam, as shown in 

Figure 1(b). The length of the beam is along direction x and it is a function of x. The 

single degree of freedom mathematical model of the beam is as shown in Figure1(c). 

The beam system is modeled as an effective mass M, effective stiffness K, and effective 

damping coefficient c. All the particles are assumed as an accumulated single mass mp. 

The enclosure is a small tin in which the particles are placed, and it has a provision by 

which the clearance d can be changed. The beam has constrained motion along the z-

direction and the instantaneous displacement u. The origin of coordinate z is located at 

the equilibrium position of mass M and the displacement u of mass M is measured from 

its equilibrium position with the particle mass mp resting at the bottom of the enclosure. 

 

Mathematical Expression 

 

The effective mass of the beam system M is a function of the end mass and the reduced 

mass of the beam, and it is given as Eq. (1).                            

      

reducede mbmM   (1) 

 

in which end mass me will have two different values as per the position of the particles 

in the enclosure: 

me = ( mencl + mp ) when the particles are moving in contact with the enclosure base, 

me = ( mencl) when the particles are moving separately from the enclosure. 

mencl = mass of the enclosure. 

mbreduced is a function of its length and is expressed with the help of Rayleigh’s Energy 

method 

   dxxmb

L

reduced 
0

2
  (2) 

To find  x , we consider a cantilever beam of mass Mb, having length L, and a point 

load of weight W at the free end of the cantilever. We know that the maximum 

deflection of the cantilever is at the free end, which is given as 

EI

WL
Y

3

3

max   (3) 

The minus sign is because of the downward deflection. 

In addition, the deflection of the cantilever beam, at any point on the beam at a distance 

x from the fixed support, is 
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Eq. (4) can be written in terms of Ymax as 
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For the velocity of the beam, we differentiate Eq. (5) with respect to time t 
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Invoking Rayleigh’s maximum kinetic energy theorem, it can be written as:  
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From Eq. (8),  x  is given as 

  









3

3

2

2

22

3

L

x

L

x
x  (9) 

where x  is the length of the beam to the point at which the effective mass is desired to 

be calculated. Accordingly, the limit of integration in Eq. (2) will change. 

dx
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The effective mass at the free end of the beam is calculated after solving Eq. (10) with 

an integration limit 0 to L 

be MmM 2357.0  (11) 

From Eq. (11), it is clear that the effective mass of the beam M at the free end, is the 

sum of the end mass and the reduced mass of the beam (reduced mass of the beam is 

23.57% that of the actual mass of the beam). The reduced mass of the beam is 0.1673 

Kg.  

   dxxEIK

L

 
0

2
  (12) 

It is observed that the reduced stiffness K of beam is the same as that of the static 

stiffness of the beam (i.e., 3EI/L
3
); for the test beam, it is 5.786 KN m

-1
.  

 

The effective damping coefficient of the beam system C is given as 

  2
1

2 M
Kc b




  (13) 

where Ψb is the specific damping capacity of the beam material. The damping ratio can 

be given as 

 



































42 2
1

b

cr KM

C
c

c  (14) 

This damping ratio   can be found by conducting a forced excitation test of the 

test beam within a frequency range of 0 to 70 Hz and then by using the Half Power 

Bandwidth method. The damping ratio   of the test beam is found to be 0.3. The 

natural frequency of the beam without the enclosure is ωn =   2
1

/ reducedmbK  = 185.96 

rad/sec. Therefore, the natural frequency    2
1

/2/1 reducedn mbKf   = 29.61 Hz, and 

the damped natural frequency of the beam is fd = fn   2121   = 28.24 Hz. When the 
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enclosure is attached at the free end of beam, then ωn=   2
1

/ MK  = 138.53 rad/sec and 

therefore, the natural frequency fn=   2
1

/
2

1 MK


 = 22.05 Hz and the damped natural 

frequency is fd = fn   2121   = 21.03 Hz. 

The experimentation was done for both transient and forced excitation. Spherical 

particles of copper material of four different sizes were used: 1, 2, 3 mm in diameter, 

and dust. For each size, the packing ratio was changed from 0% to 100% in steps of 

25%. The readings were taken for 55 g of effective particle mass. The enclosure was 

fixed on the beam for transient excitation and an initial displacement of 18 mm was 

given to the beam at its free end. It was then allowed to vibrate freely and readings were 

taken on the FFT analyzer. Readings were also taken for forced excitation in the same 

way as discussed above. In this, the exciter tip was kept exactly below the beam’s free 

end with minimal (≈ 3 mm) between them. This gap is kept constant for all the forced 

excitation readings. The enclosure was fixed on the free end of the beam by screws, and 

an accelerometer was attached below the beam near the point of excitation. The 

frequency of excitation was varied from 8 to 40 Hz in steps of 2 Hz, which includes the 

resonance frequency of beam.  

 

RESULTS AND DISCUSSION 

 

Transient Excitation 

 

Figures 2 and 3 explore the behavior of both the acceleration and displacement versus 

the packing ratio for the selected sizes of particles. The orientation of both graphs 

remains almost the same for all sizes of particles. The acceleration and displacement of 

the beam for all sizes of particles decreases linearly and with steeper gradient from 0% 

to 25% packing ratio. These quantities for 1–3-mm particle sizes keep on reducing with 

a lessening gradient up to 50% and then they increase slowly up to 75% with the curves 

resembling a near-horizontal line. However, for dust, these quantities increase in the 

zone of 25% to 50% and 50% to 75% with an increasing slope. In the zone of 75% to 

100%, these quantities increase suddenly for all particle sizes including dust. This 

happens due to the proportion of the contribution of the impact and friction phenomena 

on the damping of the beam. From these graphs, it can be said that the PID is highly 

effective when the packing ratio is between 25% and 75%. 
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Figure 2. Acceleration versus packing ratio for transient vibration. 
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Figure 3. Displacement versus packing ratio for transient vibration. 

 

The movement of particles in the enclosure (and hence, the number of impacts 

of the particles) is directly proportional to the displacement and acceleration obtained 

from the beam. Furthermore, as the size decreases, the number of particles for the said 

mass ratio increases and therefore, the probability of an impact increases. For bigger-

sized particles, the beam acceleration is required to be greater, which will make the 

particles have impacts. It is observed that dust gives the minimum damping 

performance because there are no impacts and the lowest damping offered is due to 

friction. The 1-mm particles show the maximum damping performance. As the packing 

ratio increases (i.e., the number of particles close to each other increases), the friction 

effect increases, but simultaneously, the impact effect decreases. Hence, maximum 

damping can be achieved with particles of size 1 mm and packing ratio of 50%. 
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Forced Excitation 

 

Figures 4–7 reveal the behavior of both acceleration and displacement versus excitation 

frequency for the different particle sizes and with five different packing ratios for every 

particle size. A 0% packing ratio means zero particles in the enclosure, which shows 

zero damping effect because there are no impacts and no friction. However, with 

packing ratios of 25% to 100%, the variation in contribution of the impact and friction 

phenomena on damping can be seen easily. To have impacts of particles, the 

acceleration of the beam must be greater than the acceleration due to gravity and for 

this, the frequency range of 8 to 40 Hz was selected for the experimentation. This study 

was done with small amplitude and low frequency range of excitation. Figure 4 gives 

the damping performance of the beam with particles of size 1 mm. It is found that the 

damping effect is highest at resonance with 25% packing ratio and that it decreases in a 

sequence of packing ratio from 25% - 75% - 50% - 100%, and this is true for almost all 

frequencies with few exceptions. This size and packing ratio of particles causes the 

impact phenomenon to dominate the friction phenomenon. In these graphs, it can also 

be seen that the effective packing ratio is between 25% and 75%, and it is actually 25%. 
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(b) Displacement 

Figure 4. Variation of acceleration and displacement versus excitation frequency for 

forced vibration with 1-mm Cu balls. 
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Figure 5 reveals the damping effect of the PID with 2-mm-sized particles. It is 

found that the highest damping effect is achieved with 100% packing ratio. In addition, 

the damping effect shown by packing ratios 25% and 50% are much closer to that of 

100%, and that the damping effect of 75% packing ratio is close to 0%. Here, the 

friction phenomenon is strongest with 100% packing ratio and the impact phenomenon 

is strongest with 25% and 50% packing ratio. However, the 75% packing ratio does not 

give significant damping. Here, as size is increased, the surface area prone to friction is 

also increased and the frictional effect dominates the impact effect. Therefore, the 

effective damping is 100%. 
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(b) Displacement 

 

Figure 5. Variation of acceleration and displacement against excitation frequency for 

forced vibration with 2-mm Cu balls. 

 

Figure 6 presents the damping performance of the beam with 3-mm-sized particles. 

Owing to the increased size, the mass of a single particle is larger and the excitation 

force falls short; thus, impacts are not be observed and the highest damping is due to 
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friction with 100% packing ratio. In addition, other packing ratios show considerable 

damping. Here, it is also seen that as size is increased, the surface area prone to friction 

is also increased and that the frictional effect dominates the impact effect. Therefore, the 

effective damping is 100%. 
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(b) Displacement  

 

Figure 6. Variation of acceleration and displacement against excitation frequency for 

forced vibration with 3-mm Cu balls. 

 

Figure 7 explores the dynamic response of the beam for copper dust. Under this 

condition, as the mass of a single particle is negligible, the observed damping is due to 

friction and not impact. In addition, the amount of damping is reduced compared with 

the other sizes and packing ratios. Therefore, it is better to avoid dust when considering 

PIDs. 
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(b) Displacement 

 

Figure 7. Variation of acceleration and displacement against excitation frequency for 

forced vibration with Cu dust. 

 

CONCLUSION 

 

It is observed that under both transient and forced vibration, the size of the particles of 

the PID is the key factor in achieving the maximum damping effect. In experimentation, 
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it is observed that the 1-mm particles are the best size for the setup under consideration. 

It is shown that packing ratio also has an effect on damping. Under transient excitation, 

as the number of particles increases, the impact effect dominates the friction effect up to 

50% packing ratio, beyond which the friction effect dominates the impact effect for all 

locations of the PID. However, the amount of damping due to the friction effect is 

smaller than that of the impact effect; this is due to the low frequency range. Under 

forced excitation, the effective packing ratio can be between 25% and 50% depending 

upon the excitation frequency and magnitude of the excitation force. Some nonlinearity 

in the behavior of the PID is observed. 
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