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ABSTRACT 

 

This paper presents a review of the studies undertaken on convection heat transfer with 

nanofluids. Initial studies were directed towards the determination of the properties of 

nanofluids, especially their thermal conductivity and viscosity. The studies indicate that 

thermal conductivity and viscosity increase with an increase in the concentration of the 

nanofluid. Experiments were conducted with different nanofluids, at various 

concentrations and temperature ranges, for the estimation of the heat transfer coefficient 

and friction factor for water-based nanofluids. All the studies confirmed enhancement of 

the heat transfer coefficient with an increase in concentration. The experimental ranges 

of temperature undertaken by the authors were different for different nanofluids. Certain 

studies with smaller particle sizes indicated an increase in heat transfer enhancements 

when compared with values obtained when using larger particle sizes. It is observed that 

the concentration of the nanofluid, the operating temperature, the particle size and 

shape, together with the material of the nanoparticle dispersed in the base liquid, have 

significant influence on the heat transfer coefficient. All the studies indicate a nominal 

increase in pressure drop. 

 

Keywords: Convection heat transfer; thermal conductivity; viscosity; friction factor; 

nanofluid. 

 

INTRODUCTION 

 

A nanofluid is prepared by dispersing particles of metal or metal oxide with sizes of 100 

nm or less, in a base liquid such as water. The purpose of using nanofluids is to achieve 

higher values of heat transfer coefficient compared with that of the base liquid. This is 

achieved by the dispersion of solid particles, which have higher thermal conductivity 

than the base liquid. There are many engineering applications that can benefit from the 

use of nanofluids, for example absorption refrigeration, micro electromechanical 

systems, lubrication of automotive systems, the manufacture of advanced miniature 

camera lenses, coolant in machining, automobile radiator cooling, personal computers, 

solar water heating, heat exchangers, several medical applications, nuclear reactors, and 

in several aerospace applications. Recent advances in material technology have made it 

possible to produce innovative heat transfer fluids by suspending nanometer-sized 

particles in base fluids, which could change the transport and thermal properties of the 

liquids. Nanofluids represent solid-liquid composite materials consisting of solid 

nanoparticles with sizes no larger than 100 nm suspended in liquid (Ferrouillat, 2011). 

This study presents the work undertaken by various investigators and the possible 

impact of nanofluids on the enhancement of heat transfer in the near future. 
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THERMAL PROPERTIES OF NANOFLUIDS 

 

The thermal properties of nanofluids have received significant attention. Nanofluids are 

considered to offer important advantages over conventional heat transfer fluids. A 

number of experimental studies to investigate the transport properties of nanofluids 

have been carried out (Choi, 1995; Masuda, Ebata, Teramae, & Hishinuma, 1993; 

Eastman, Choi, Li, Thompson, & Lee, 1997; Lee, Choi, Li, & Eastman, 1999). Many 

researchers have used regression equations of density and specific heat capacity 

(Gianluca, 2012; Heris, Etemad, & Esfahany, 2006; Incropera & DeWitt, 1996; 

Kulkarni, Namburu, Ed Bargar, & Das, 2008; Lee et al, 1999; Li & Xuan, 2002; Ma, 

Wilson, Borgmeyer, Park, & Yu, 2006; Masuda et al, 1993; Namburu, Kulkarni, Misra, 

& Das, 2007) as: 
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Thermal Conductivity 

 

The thermal conductivity of nanofluids was found to increase with concentration (Pak & 

Cho, 1998; Xuan and Li 2000; Xuan & Roetzel, 2000; Xue, Keblinski, Phillpot, Choi, & 

Eastman, 2004; Heris et al., 2006) following experiments undertaken with Cu, Al2O3, 

CuO, and TiO2 nanoparticles in water, they also, observed heat transfer enhancement as 

high as 40% with Al2O3 particles. A simulation of the effective thermal conductivity of 

nanofluids through modeling has been undertaken by Bhattacharya, Saha, Yadav, 

Phelan, & Prasher (2004). Nanoparticles dispersed in ethylene glycol (EG), water (H2O) 

and oil have shown an increase in the thermal conductivity ratio (knf / kf) with a decrease 

in the thermal conductivity values of the base fluid (Lee et al., 1999). With regard to the 

volume concentrations and magnitude of particle-particle interaction that are affected by 

pH, surfactant additives, and particle size and shape, agglomeration equilibrium is 

established in nanoparticle suspension. It should be noted that two types of 

agglomeration are possible in nanofluids. The first type of agglomeration occurs when 

nanoparticles are agglomerated through the solid-solid interface, which can potentially 

provide increased thermal conductivity, as described by Prasher, Wang, and Phelan 

(2006). The SiC in water and EG/water mixed with volume concentration and pH was 

studied by Timofeeva, Yu, France, Singh, and Routbort (2010). It showed that the 

change in thermal conductivity ratio was 5% higher in EG/water than in water 

considering all other parameters. The base fluid effect, observed with different 

nanofluid systems, is most likely related to the lower value of the thermal resistance in 

the EG/water than in the water-based nanofluids. Both thermal conductivity and 

viscosity are related strongly to the nanofluid microstructure. The nanoparticles 

dispersed in a base fluid are in random motion under the influence of several forces 

such as Brownian motion, intermolecular van-der-Waals interaction (repulsion, 

polarization, and dispersion forces), and electrostatic interactions between ions and 

dipoles. Thermal conductivity measurement of pure fluids by the transient hot-wire 

method has been investigated (Wang, 2009). A transient hot wire is in contact with the 
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liquid being studied (Pawan, Singh, & Anoop, 2010; Gianluca, 2012) and the effect of 

temperature on thermal conductivity is shown in Figure 1. The thermal conductivity of 

nanofluids has been found experimentally, and data of the thermal conductivity for 

metal and metal oxides, such as Al2O3, Fe3O4, TiO2, ZnO, ZrO2, and CuO nanofluids, 

available in the literature, have used in the development of the regression Eq. (3). 
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Figure 1. Effect of temperature on thermal conductivity. 

 

Viscosity 

 

Rheometers are used to measure the rheological properties of nanofluids (Ding et al., 

2006; Prasher et al., 2006). The viscosity has been shown to decrease with an increase 

in the average diameter size in both EG/water and water-based suspensions. However, 

at the same volume concentration of nanoparticles, the relative viscosity increase was 

smaller in EG/water than in the water-based nanofluids, especially in suspensions of 

smaller nanoparticles (Timofeeva et al., 2010). According to the classic Einstein 

equation for hard non-interacting spheres (Vold, Kristiansen, & Christensen, 2007), the 

viscosity increase should be independent of the viscosity of the base fluid and only 

proportional to the volume concentration. Viscometers have been used by Nguyen, 

Desgranges, Galanis, Roy, Mare, Boucher, & Angue (2008), Namburu et al. (2007), and 

Pozhar (2000) who studied the effect of nanofluid concentration on viscosity (Figure 2). 

The experimental data of viscosity obtained at 4% volume fraction, consisting of many 

data points, was subjected to regression and the following correlation obtained. 
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Figure 2. Effect of temperature on viscosity.  

 

Friction Factor 

 

Turbulent friction factors have been evaluated for the flow of nanofluids in a tube (Pak 

& Cho, 1998; Xuan & Li, 2002; Yang, Zhang, Grulke, Anderson, & Wu, 2005; Ding et 

al., 2006; Ma et al., 2006; Kulkarni et al., 2008). Some of the studies are in agreement 

with values estimated by using the Blasius equation: 

 

25.0Re

316.0
f                  For         Re > 1 ×10

4
                  (5) 

 

The calculated friction factors were then compared for validation (Incropera & DeWitt, 

1996; Dong & Leyuan, 2010). Figure 3 shows the friction factors at different Reynolds 

numbers. 

 

HEAT TRANSFER ENHANCEMENT 
 

Numerical studies of steady-state turbulent convection of a water-Al2O3 nanofluid 

inside a circular tube, by means of the finite volume method, has been investigated by 

many researchers (Li, 2002; Bianco & Manca, 2011; Syam Sundar & Sharma, 2011a,b; 

Rao, Sharma, Chary, Bakar, Rahman, Kadirgama, & Noor, 2011), and the results 

showed that heat transfer is enhanced with particle volume concentration and Reynolds 

number. A study of forced convection heat transfer of nanofluids inside a horizontal 

circular tube, subjected to a constant and uniform heat flux at the wall, was carried out 
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by Shuichi (2012), and the results showed that the heat transfer enhancement was 

caused by the suspended nanoparticles. A bibliography of works on experimental forced 

convective heat transfer with nanofluids with Al2O3 particles and TiO2 particles at the 

same concentration levels is presented in Table 1. When taking into account thermal 

conductivity, it is not surprising that the Cu-water nanofluid shows the highest heat 

transfer enhancement. However, the thermal conductivity enhancements of Al2O3 and 

TiO2 in water are similar, although the heat transfer enhancement of Al2O3 in water is 

higher than that of TiO2 in water. 

 

 

Figure 3. Friction factor at different Reynolds number. 

 

However, two groups found that the heat transfer coefficient of nanofluids 

(Al2O3 and TiO2 in water and SiC in water) was lower than for pure water for constant 

average velocity in a turbulent flow (Ferrouillat, 2011; Vijaya Lakshmi, 

Subrahmanyam, Dharma Rao, & Sharma, 2012). A hybrid nanofluid was used to 

enhance the heat transfer and pressure drop in a fully developed laminar flow through a 

uniformly heated circular tube (Suresh, Venkitaraj, Selvakumar, & Chandrasekar, 

2012). Experimental results using Cu-Al2O3 in water synthesized with 0.1% volume 

concentration showed a maximum enhancement of 13.56% in the Nusselt number at a 

Reynolds number of 1730 when compared to the Nusselt number of water. Results also 

showed that 0.1% Cu-Al2O3/water nanofluids have a slightly higher friction factor when 

compared with 0.1% Al2O3-water nanofluid. Correlations of the Nusselt number and 

friction factor were found and there was good agreement with the experimental data of 

other researchers. A number of studies concluded that heat transfer enhancement 

depends on the Dittus-Boelter equation (Eq. (6)): 
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where n is 0.4 at heating and 0.3 at cooling. The increase in heat transfer coefficient in 

the turbulent flow of a nanofluid in a tube was reported by Pak & Cho (1998). They 

showed the increase was 45% with 1.34% volume fraction of Al2O3 in water, and 75% 

with a nanoparticle loading of 2.78%. They predicted that the Nusselt number was a 

function of the Reynolds number and Prandtl number. 

 
5.08.0 PrRe021.0 Nu                                                   (7) 

 

Xuan and Li (2002) followed Pak and Cho (1998) in showing that an increase of 

as much as 40% could be achieved in the heat transfer coefficient of a nanofluid. The 

correlation of the convection heat transfer coefficient of nanofluids in a horizontal tube 

was found to be: 

 
4.0333.0218.075.0 PrRe)285.110.1(4328.0 PeNu                               (8) 

 

Table 1. Results of papers published on different types of nanofluid.  

 
Ref. Nanofluid Re Nunf/Nuf 

Lee & Choi (1996) 

 

Pak & Cho (1998) 

 

 

Li & Xuan (2002) 

 

Xuan & Li (2002)  

 

Wen & Ding (2004) 

 

 

Yang et al. (2005) 

 

 

Ding et al. (2006) 

 

Zeinali, Esfahany & 

Etemad (2007) 

 

 

 

Rea, McKrell, Hu & 

Buongiorno (2009) 

 

Jung, Natter, 

Hempelmann & 

Lach (2009) 

 

Hwang, Lee, Park, 

Park, Jung, Lee & 

Song (2009) 

Metallic nanoparticle 

suspension   

Al2O3–water TiO2–

water 3 vol.%  

 

Cu–water 2 vol.%  

 

Cu–water 0.3–2 vol.% 

 

Al2O3–water 0.2–1.6% 

 

 

Graphite 2–2.5 wt.% 5 

 

 

CNT–water (aspect ratio 

> 100) 0.1–1 wt.% 

Al2O3–water 0.2-2.5 

vol.% 

 

 

Al2O3–water 0.6–6.0 

vol.% ZrO2–water 0.32–

3.5 vol.% 

 

Al2O3–water 0.6–1.8 

vol.% Al2O3–water  
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An experimental study was carried out by Yang (2005) who reported that 

nanoparticle concentration, material, temperature, and base fluid all affected the heat 

transfer coefficient. Bianco and Manca (2011) showed the effect of concentration on the 

heat transfer coefficient and Nusselt number with Reynolds number, as shown in 

Figure 4. 

 

 
 

(a) Heat transfer coefficient 

 
 

(b) Nusselt number 

 

Figure 4. (a) heat transfer coefficient, (b) Nusselt number, at different Reynolds number. 

  

CONCLUSION 

 

The review of these studies shows that nanofluids are very important for many 

applications. Many studies showed good agreement between experimental and 

numerical studies. Some general conclusions are: 

1. An increase in thermal conductivity occurred by adding nanoparticles to liquids. 

2. Viscosity increased as the concentration of particles increased. 

3. Friction factor increased with Reynolds number from experimental results and 

from the Blasius equation. 

4. The convection heat transfer coefficient was shown to increase with Reynolds 

number and volume concentration by experimental results and the Dittus-Boelter 

equation. 

5. There are many correlation equations among the input parameters (volume 

concentrations, Reynolds number, and temperature) and output parameters 

(friction factor and Nusselt number).  
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NOMENCLATURE 

C   specific heat capacity (J/kg.
o
k)   

d   diameter of tube (m)   

f   friction factor          

h   heat transfer coefficient (W/m
2
.
o
C)       

k   thermal conductivity (W/m.
o
C)        

Nu   Nusselt number (
k

dh
Nu


 ) 

Pe   Peclet number (Pe=RePr) 

Pr   Prandtl number (
k

C
Pr


 ) 

Re   Reynolds number (


 dv
Re


 ) 

v    velocity of fluid (m/s) 

   concentration of solid particles  

   Viscosity (Pa.s) 

   Density (kg/m
3
) 

SUBSCRIPTS 

av      average value 

f       fluid   

nf      nanofluid 

s      solid 


