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ABSTRACT 

 

Vehicles produce sound signals with varying temporal and spectral properties under 

different working conditions. These sounds are indicative of the condition of the engine. 

Fault diagnosis is a significantly difficult task in geographically remote places where 

expertise is scarce. Automated fault diagnosis can assist riders to assess the health 

condition of their vehicles. This paper presents a method for fault detection and location 

in motorcycles based on the chain code of the pseudospectra and Mel-frequency cepstral 

coefficient (MFCC) features of acoustic signals. The work comprises two stages: fault 

detection and fault location. The fault detection stage uses the chain code of the 

pseudospectrum as a feature vector. If the motorcycle is identified as faulty, the MFCCs 

of the same sample are computed and used as features for fault location. Both stages 

employ dynamic time warping for the classification of faults. Five types of faults in 

motorcycles are considered in this work. Observed classification rates are over 90% for 

the fault detection stage and over 94% for the fault location stage. The work identifies 

other interesting applications in the development of acoustic fingerprints for fault 

diagnosis of machinery, tuning of musical instruments, medical diagnosis, etc. 

 

Keywords: Motorcycle fault diagnosis; pseudospectral analysis; acoustic signal; DTW 

classifier. 

  

INTRODUCTION 

 

Motorcycles are the favorite mode of transport in India. They account for the majority 

of the Indian automobile market with nearly 77% of the share of total vehicle sales. 

Two-wheelers registered a growth of 15.94% during April–August 2011. Unit sales of 

motorcycles are estimated to exceed 10 million by 2012–13 (IR, 2010). Vehicles 

produce different sound patterns under different working conditions when in motion. 

Service mechanics can diagnose faults based on the sounds produced by using the 

expertise acquired over many years. Vehicle classification and fault diagnosis based on 

acoustic signals adds further difficulty to analyzing sound patterns. The most influential 

factors include the non-stationary nature of the sound, and variations in speed, engine 

condition, road condition, and the surrounding environment. Some speech processing 

techniques such as the hidden Markov models are not suitable for these applications 

because of the lack of alphabet sounds.  

The proposed work is divided into two stages: fault detection, and fault location. 

The terms location and localization are used interchangeably in this paper. In the fault 
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detection stage, the chain codes of the pseudospectrum of the sound signal are used as 

feature vectors. The extracted chain codes are used as input to dynamic time warping 

(DTW) techniques for classification. If a sound sample of a motorcycle is identified as 

faulty in the first stage, it is subjected to the fault location stage. The work employs 

Mel-frequency cepstral coefficient (MFCC) features for fault location, which are used 

for speech and speaker recognition. The need, applications, market scenario, and 

accident-prone Indian rural road conditions motivated this research. The work intends to 

alert riders to the possibility of accidents by indicating faults well in advance. It is also 

useful for service station experts in their preliminary analysis of faulty vehicles. The 

conducted literature survey is divided into two parts: engine fault diagnosis and gearbox 

fault diagnosis. 1D central contour moments and invariant contour moments of 

approximation coefficients of DWT have been used as inputs for the DTW classifier for 

detecting the condition of motorized two-wheelers based on acoustic signals (Anami, 

Pagi, & Magi, 2011; Tan & Wong, 2012). The entropy of db4 wavelet for feature 

extraction and a functional link neural network has been employed for fault diagnosis of 

the motorbike engine (Paulraj, Yaacob, & Mohd Zubir, 2009). A fault diagnosis system 

has been proposed for a scooter engine platform (Wu, Chang, Liao, Kuo, & Huang, 

2009). The system uses continuous wavelet transform and artificial neural network 

techniques. The mechanisms of engine front noise generation and the corresponding 

countermeasures employed in the development of a diesel engine have been surveyed 

using a sound intensity method (JunHong & Bing, 2005). A de-noising method uses the 

Morlet wavelet for extracting the features of sound of vehicle engines with different 

types of failure. 

Localized gear tooth defect recognition by Engin and Gulez (1999) used a 

wavelet-transform-based artificial neural network. An adaptive wavelet filter based on 

the Morlet wavelet has been presented for the detection of vibration signals of a gearbox 

(Lin & Zuo, 2003). RMS and power spectral density have been used for the fault 

diagnosis of a Massey Ferguson gearbox (Heidarbeigi, Ahmadi, Omid, & 

Tabatabaeefar, 2009). A methodology for gearbox fault location detection used acoustic 

emission sensors for a split-torque gearbox and used wavelet transform techniques (He, 

Li, & Bechhoefer, 2010). 

 

Some of the limitations of the reported works include: 

 

i) Computationally expensive methods and lack of robustness.  

ii) Lack of analysis for separability of the features.  

iii) Morlet-wavelet-based works are not fast because they have drawbacks such as 

an absence of a scaling function and not being orthogonal.  

iv) Dependency on knowledgebase poses a serious limitation when tested with new 

data.  

v) Lack of real-time applicability.  

vi) Lack of transparency due to larger feature sets.  

 

From the comparative analysis of the literature, it is evident that a reasonable 

amount of research has been reported for a wide range of applications, covering fault 

classification, vehicle classification, and medical diagnosis. The reported works employ 

computationally expensive techniques that are not transferable to real-world 

environments and real-time applications. Comparison of our work with the reported 

works is difficult because of the differences in experimental conditions, recording 
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conditions, and databases. As there is no reported work on fault detection and location 

in motorcycles, based on their sound patterns, we have taken up this work. 

 

METHODOLOGY 

 

The proposed methodology has two stages: fault detection and fault location. Fault 

detection determines whether the motorcycle is healthy or faulty, whereas the fault 

location stage identifies the exact source of the fault. Figure 1 depicts a block diagram 

of the proposed methodology.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Block diagram of the proposed methodology. 

 

The chain code of the estimated pseudospectrum of length 128 digits is employed 

as a feature vector. The extracted feature vector is used as input to the DTW classifier. 

The second stage employs MFCC features of the acoustic signals as input to the DTW 

classifier. The DTW classifier compares the test feature vector with the reference 

feature vectors. The smallest of the DTW distances indicates whether the sample is 
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healthy or faulty in the first stage, and it indicates the type of fault in the second stage. 

The reference feature vector for healthy motorcycles is computed as the mode of the 

chain codes of pseudospectra estimated from the healthy samples. The same procedure 

is followed for the computation of the reference feature vector for faulty motorcycles. 

 

Stage 1: Fault detection based on chain codes of estimated pseudospectra and 

DTW 

 

Fault detection uses the chain code of the estimated pseudospectra as features computed 

over the recorded sound samples. The following subsections discuss the acquisition of 

sound samples, and feature extraction and classification, as applied to the fault detection 

stage.  

 

Acquisition of Sound samples  

 

A Sony ICD-PX720 digital voice recorder is used for recording the sound samples of 

motorcycles under idling conditions with no acceleration applied. The recording is 

performed with 44.1-kHz sampling frequency and 16-bit quantization. The service 

stations in which the recordings are obtained have additional disturbances from human 

speech, sounds of other vehicles being serviced, air-compressors, and other automobile 

repair tools. The recorder is held 500 mm from the end of the exhaust at the angle of 45° 

measured from the exhaust’s centerline. The running of the engine and control of 

throttle are conducted by an expert mechanic. As the recording of samples is conducted 

in a real-world environment with surrounding disturbances, the method adopted is 

considered robust to extraneous noise. 

Sound samples from healthy motorcycles are collected from those machines that 

are one-year old, have not passed 6000 km, and that have been serviced regularly. 

Sound samples of faulty motorcycles are collected from machines of varying age from 

one- to six-years old and that contain one of the aforementioned faults. 390 sound 

samples of healthy motorcycles and 390 sound samples of faulty motorcycles are used 

for the first stage, i.e., fault detection. Table 1 presents the details of the motorcycle 

sound samples considered in this work. The sound samples of motorcycles from the 

same manufacturer but from different models are considered for the second stage. A 

brief description of the faults considered in this work is given below: 

 

Valve setting: Any deviation of between 5–10° in valve opening/closing causes a 

considerable rise in peak combustion chamber pressure, which leads to a change 

in engine sound. 

Crank fault: This may occur owing to wear and tear of either oil ring, first ring or 

second ring.  

Muffler Leakage: The reactive gases in the residual exhaust mixed with water vapor 

create an ideal environment for corrosion reactions. This results in minute holes 

in the muffler and changes the firing sound of the engine.  

Silencer leakage: Silencer leakage is caused either by a hole inside the silencer filter 

pipe or by a damaged gasket. 

Timing Chain: The main function of the timing chain is to operate the valves. A loose 

chain vibrates and results in a change of sound.  
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Table 1. Details of the motorcycles considered. 

 

 

Segmentation 

 

The acquired sound samples are segmented into samples, each of one-second duration, 

for uniformity in processing. The first segment is extracted beginning from the local 

maxima in the first 50-ms span. The subsequent segment begins at the local maxima of 

the next 50-ms duration from the end of the previous segment.  

 

Feature Extraction 

 

The slopes of the pseudospectral spans are employed as features. The estimated 

pseudospectral vector is divided into eight equal spans. The slope of each segment is 

computed to form a feature vector. 

 

 

 

 

Sl. No Model Kilomet

ers run 

Age  Condition Recording 

duration 

No. of 

samples 

1.  HH Spl + 529 2 M Healthy 48 s 35 

2.  HH Spl Pro 2142 4 M Healthy 44 s 25 

3.  HH Pleasure 676 1 M Healthy 52 s 38 

4.  Scoot Streak 4332 11 M Healthy 47 s 36 

5.  Scoot Streak 1668 9 M Healthy 46 s 37 

6.  Scoot Pep + 756 1 M Healthy 44 s 29 

7.  HH spl Pro 892 10 M Healthy 51 s 41 

8.  HH CBZ Ex 5727 1 Y Healthy 46 s 28 

9.  Bajaj CT 100 5116 1 Y Healthy 51 s 41 

10.  HH Glamour 1261 7 M Healthy 62 s 42 

11.  Pulser DTSI 5010 10 M Healthy 49 s 38 

12.  HH CD100 D  62979 9 Y Muffler leak 54 s 22 

13.  HH Super Spl 54777 5 Y Muffler leak 47 s 15 

14.  HH Passion 74737 6 Y Silencer leak 49 s 20 

15.  HH Spl 67065 10 Y Silencer leak 55 s 19 

16.  HH CD 100 39200 18Y Silencer leak 54 s 16 

17.  HH Passion + 61,999 9.5 Y Timing chain 50 s 38 

18.  HH Spl + 21373 4 Y Timing Chain 56 s 30 

19.  HH Spl 77905 6 Y Timing Chain 50 s 31 

20.  HH CD Dawn 73888 6 Y Timing chain 48 s 30 

21.  HH Pleasure 27043 4 Y Timing Chain  49s  32 

22.  HH CBZ  81014 8 Y Timing chain  64 s 49 

23.  HH Spl + 15711 2 Y  Valve setting 51 s 13 

24.  HH Splend 50632 5Y Valve setting 58 s 22 

25.  HH Splend 36040 3Y Valve setting 46 s 17 

26.  HH Spl  4,216 8 M Faulty crank 47 s 36 

Total No. of samples 780 
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Pseudospectrum Estimation 

 

The pmusic function of MATLAB is employed for pseudospectral estimation of the 

sound signals. The pseudospectrum is calculated by using estimates of the eigenvectors 

of a correlation matrix associated with the input data x. [S, w] = pmusic(x, p) 

implements the MUSIC (Multiple Signal Classification) algorithm and returns S, the 

pseudospectrum estimate of the input signal x. p is the signal subspace dimension and w 

is a vector of normalized frequencies (in rad/sample) at which the pseudospectrum is 

evaluated. The MUSIC estimate is given by Eq. (1).  
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where N is the dimension of the eigenvectors and vk is the k
th

 eigenvector of the 

correlation matrix of the input signal. The integer p is the dimension of the signal 

subspace, such that the eigenvectors kv  used in the sum correspond to the smallest 

eigenvalues and also span the noise subspace. The vector  fe  consists of complex 

exponentials, such that the inner product e(f)vH

k  amounts to a Fourier transform. Eq. (2) 

shows how the summation is weighted by the eigenvalues of the correlation matrix, as 

in the eigenvector method.  
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Figure 2. Logarithmic plot of pseudospectral estimates of faults. 

 

The function relies on the singular value decomposition (SVD) matrix 

decomposition in the signal case, and it uses the eig function for analyzing the 

correlation matrix. Logarithmic plots are used to analyze the separability exhibited by 

the pseudospectra for different faults considered in this study. Figure 2 shows the 
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logarithmic plot of the pseudospectral estimates for different faults. The spectral 

estimates differ for each fault, resulting in easier fault localization. From the logarithmic 

plot of the pseudospectra, it can be observed that the fault signatures for different faults 

differ in various frequency bands. This can be attributed to the variations in engine 

cycles and exhaust properties, which result in the changes of sound under different fault 

conditions. The fault signatures of motorcycles are non-stationary in nature and thus, 

wavelet-based techniques are more suitable for the analysis of such non-stationary 

signals. Furthermore, there is scope for the analysis of the severity of the fault based on 

the sound and its characteristics. 

 

Chain Code of a Spectral Segment 

 

The pseudospectrum of a sound signal computed with pmusic(x, 16) has 129 elements. 

The chain code of a spectral segment is generated based on the changes in the gradient 

directions of the pseudospectrum from left to right. The directions in which the spectral 

gradient changes are 0 (right), 1 (top-right), and 7 (bottom-right). As adjacent values in 

the estimated pseudospectrum vector are considered for computing the chain code, the 

generated chain code has 128 values. The trailing 0s of the chain code vectors are 

removed to yield the reduced chain codes of non-uniform lengths. Hence, the DTW 

algorithm is used for comparing the reduced chain codes of unequal lengths. The chain 

code vector of a spectral curve is computed as: 
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where 1281  i . 

 

The reference feature vector for healthy motorcycle samples is constructed by 

taking the mode of the respective chain codes. Similarly, the reference feature vector for 

faulty motorcycles is constructed. The test feature vectors are compared against the 

reference feature vectors of healthy and faulty motorcycles. 

 

Computation of Mode of Chain Code Vectors  

 

The mode of a list is the element with the highest frequency of occurrence. The mode of 

each column of a set of feature vectors is computed. The reference feature vector is 

generated by concatenating the mode of the first column followed by the mode of the 

second column and so on. The trailing zeros of the chain codes are removed resulting in 

vectors of varying lengths. DTW is adjudged suitable for classification, because it can 

compare two vectors of unequal lengths. The reference feature vector for healthy 

motorcycle samples in terms of reduced chain code is: 

 

7,7,7,7,1,1,1,1,1,1,1,1,1,1,7,7,7,7,7,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0

,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,7 

 

In a similar fashion, the reference faulty feature vector is computed as the mode of 

the feature vectors of faulty samples, which is given as:  
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7,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,7,7,7,7,7,7,1,1,1,1,1,1,1,1,1,1,1,1,1

,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,7 

 

DTW Classifier  

 

The DTW algorithm (Sakoe and Chiba, 1978) is used to calculate an optimal warping 

path between two time series and the distance between them. It matches those patterns 

independent of non-linear variations. Consider the two numerical sequences 

 n2 a,,a,a 1  and  m2 b,,b,b 1. . The local distances between the elements of the two 

sequences are calculated, which results in a matrix of distances of size  mn :  

 

  m,=jn,=i,ba=d jiij  1,1,                          (4) 

 

The local distance matrix is used to compute the minimal distance matrix between 

the two sequences, using a dynamic programming approach and the optimization 

criterion, as given in Eq. (5):  

 

 
1ji,j1,ijiijij a,a,a+d=a  11,min                                (5) 

 

where ija  is the minimal distance between the subsequences  n2 a,,a,a 1  and 

 m2 b,,b,b 1. . A warping path is obtained through the minimal distance matrix from 

11a  element to element nma , consisting of those ija  elements that have formed the nma  

distance. The global warp cost of the two sequences is defined as in Eq. (6): 
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where iw  are those elements that belong to the warping path and p is the number of 

elements on the warping path. 

 

The DTW distance of the test feature vector against the reference feature vector is 

computed. The algorithm finds an optimal match by warping the sequences to determine 

a measure of their similarity. DTW matches the patterns independent of non-linear 

variations. If the Euclidian distance of the test sample with the healthy mean DTW 

distance is smaller than that with the faulty mean DTW distance, the motorcycle is 

classified as healthy; otherwise, it is classified as faulty. Figure 3 illustrates the working 

of the DTW algorithm. It compares the feature vectors (0.5, 0.9, 1.2, 0.8, 0.6, 0.5, 0.2, 

0.1) and (0.7, 0.6, 1.1, 0.7, 0.6, 0.4, 0.3, 0.2). The smallest of the distances of the test 

feature vector to the reference feature vectors of the healthy and faulty samples, 

indicates the health condition in the first stage. The same criterion is used to indicate the 

type of the fault in the second stage. 
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Figure 3. Illustration of working of DTW algorithm. 

 

 

Stage 2: Fault Location using MFCC Features 

 

MFCCs are derived from a cepstral representation of the sound signal. The Mel-scale 

approximates the human auditory system’s response more closely than the linearly 

spaced frequency bands used in the normal cepstrum. The frequency bands are equally 

spaced on the Mel-scale. The MFCCs are computed first by taking the Fourier transform 

of a signal. Then, the powers of the spectrum are mapped onto the Mel scale using 

triangular overlapping windows. The logs of the powers at each of the Mel-frequencies 

are taken. A discrete cosine transform of the list of Mel log powers is performed. 

Finally, the amplitudes of the resulting spectrum, taken as MFCCs, are used as features 

in speech recognition, speaker recognition systems, and music information retrieval 

applications, such as genre classification, audio similarity measures, etc. MFCC values 

are noise sensitive for additive noise and hence, are not robust. MFCC features may not 

be optimal for vehicle fault diagnosis because the filter bank spreads out the fine details 

of the spectral patterns. Sometimes these details contribute significantly to the success 

of classification.  

The motorcycle sound samples classified as faulty in the first stage are used as 

input for the fault location stage. The eight MFCCs are computed on a signal of one-

second duration and used as features for fault localization. The reference feature vectors 

for this stage are computed as the mean of the feature vectors of respective fault types. 

The DTW algorithm compares the test feature vectors with the reference features of the 

five fault types.  
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RESULTS AND DISCUSSION 

 

Disjoint sample sets are used for training and testing. The sample set includes 390 

samples of healthy motorcycles and 390 samples of faulty motorcycles. If n is the 

number of samples used for training, then (390-n) is the number of samples used for 

testing. For the first stage, the samples from healthy motorcycles of different brands and 

faulty motorcycles of the Hero Honda brand are considered. The following criterion is 

used for classification. 

 

If ((EucDist(Test, meanDTW(H)  < EucDist(Test, meanDTW(F)) 

  Class = Healthy;  

else 

  Class = Faulty; 

 

where  EucDist(x,y) – Euclidean distance of the vector x with vector y,  

Test – Test vector,  

meanDTW(H) – Mean of the DTW distances of healthy samples, i.e., reference  

                            vector for healthy samples;  

meanDTW(F) - Mean of the DTW distances of faulty samples, i.e., reference  

                           vector for faulty samples;  

Class – Health condition of the motorcycle. 

 

The results of the first stage are shown in Figure 4. 
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Figure 4. Performance of the classifier for fault detection. 

 

Table 2 shows the confusion matrix for the fault location stage. Table 3 

summarizes the classification performances for different fault types, which shows that 

the classification accuracy is 0.8108 for fault type 3. Classification accuracy of 1.0000 

is attained in the case of fault type 2. Out of 390 samples considered, 369 samples are 

correctly classified, yielding the overall classification accuracy of 0.9453. From Table 

3, it can be inferred that the MFCC features, which are employed for speech 

recognition, can be applied for non-speech applications. The signals are not 

preprocessed for denoising, but the results are quite satisfactory and hence, the features 

and the methodology are found to be robust. DTW is suitable for classifying samples 

with a limited database. Use of dynamic programming ensures a polynomial complexity 
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of  vnO 2 , where n is length of the sequence and v is the number of samples in the 

training set. However, the  vnO 2  complexity is not satisfactory for a large database. 

DTW is appropriate for applications that need simple word recognition, reliability tests 

in manufacturing units, initial servicing activities in service stations, speech recognition 

in telephones, etc. 

 

Table 2. Confusion matrix for fault location. 

 

 

 

 

 

 

 

 

 

 

Table 3. Classification performance for different faults. 

 

CONCLUSION 

 

A two-stage methodology for the fault diagnosis of motorcycles, based on sound 

patterns, is presented in this paper. The fault detection stage uses the chain codes of the 

estimated pseudospectra of the sound samples. Fault location is attempted by using 

MFCC features of the sound samples. Both stages employ the DTW classifier. The 

results for fault location differ for each type of fault. This can be attributed to the 

similarity of the sounds of the faults belonging to the same subsystem. The overall 

classification rate for fault location is around 94%. This work leaves future scope for 

fault location in different subsystems of motorcycles and for the detection of multiple 

faults. It finds applications in acoustic-signal-based machine fault detection and 

location, cardiac signal analysis, musical instrument tuning, and spoken-word analysis, 

etc.  

 F1 F2 F3 F4 F5 

F1 49 0 0 0 3 

F2 0 36 0 0 0 

F3 0 0 30 0 7 

F4 0 0 0 54 0 

F5 1 7 0 0 210 

Fault 

type 

Fault Total No. of 

samples 

No. of samples 

correctly 

classified 

No. of 

samples 

misclassified 

No. of 

samples 

not 

classified 

Classification 

accuracy 

F1 Valve setting 52 49 3 0 0.9455 

F2 Faulty crank 36 36 0 0 1.0000 

F3 
Muffler 

leakage 

37 30 7 0 0.8108 

F4 
Silencer 

leakage 

55 54 0 1 0.9818 

F5 Timing chain 210 200 8 2 0.9524 

Total 390 369 18 3 0.9461 
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