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ABSTRACT 
 

In this paper, the effect of suspended particles on thermal convection in an 

incompressible Rivlin-Ericksen elastico-viscous fluid in a porous medium is considered. 

For the porous medium, the Brinkman model is employed. By applying a normal mode 

analysis method, the dispersion relation has been derived and solved analytically. It is 

observed that the medium permeability, suspended particles, gravity field and 

viscoelasticity introduce oscillatory modes. For stationary convection, it is observed that 

the Darcy number has a stabilising effect, whereas the suspended particles and medium 

permeability have destabilising effects on the system. The effects of suspended 

particles, the Darcy number and the medium permeability have been presented 

graphically to depict the stability characteristics, which are in good agreement with the 

results derived analytically. 

 

Keywords: Brinkman porous medium, Rivlin-Ericksen fluid, suspended particles, 

thermal convection, viscosity, viscoelasticity. 

 

INTRODUCTION 

 

In recent years, considerable interest has been shown in the study of thermal instability 

in a porous medium, because it has various applications in geophysics, food processing 

and nuclear reactors (Rana 2011). Chandrasekhar (1981) gave a detailed account of the 

thermal instability of a Newtonian fluid under varying assumptions of hydrodynamics 

and hydromagnetics. Lapwood (1948) studied the convective flow in a porous medium 

using linearised stability theory. The Rayleigh instability of a thermal boundary layer in 

a flow through a porous medium has been considered by Wooding (1960). Scanlon and 

Segel (1973) considered the effect of suspended particles on the onset of Be′nard 

convection and found that the critical Rayleigh number was reduced solely because the 

heat capacity of the pure gas was supplemented by the particles. Sharma and Sharma 

(1991) have studied the stability of stratified fluids in a porous medium in the presence 

of suspended particles and a variable magnetic field; the suspended particles were found 

to destabilise the layer. Sharma and Sunil (1994) have studied the thermal instability of 

an Oldroydian viscoelastic fluid with suspended particles in hydromagnetics in a porous 

medium. There are many elastico-viscous fluids that cannot be characterised by either 

Maxwell’s or Oldroyd’s constitutive relations. One such class of elastico-viscous fluid 

is a Rivlin-Ericksen fluid. Rivlin and Ericksen (1955) proposed a theoretical model for 

such an elastico-viscous fluid. Rana and Kumar (2010) studied the effect of suspended 
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particles on the thermal instability of a Rivlin-Ericksen elastico-viscous rotating fluid in 

a porous medium. Rana (2012) studied the thermal instability of a compressible Rivlin-

Ericksen elastico-viscous rotating fluid permeated with suspended dust particles in 

porous medium. 

The investigation in porous media began with the simple Darcy model and was 

extended gradually to the Darcy-Brinkman model. A good account of the convection 

problems in a porous medium is given by Vafai and Hadim (2000), Satya Narayana, 

Ramireddy and Venkataramana (2011), Ingham and Pop (1981) and Nield and Bejan 

(2006). Kuznetsov and Nield (2010) have studied the thermal instability in a porous 

medium layer saturated by a nanofluid in a Brinkman porous medium. Sharma, Kishore 

& Rana (2001) have studied the instability of streaming Rivlin-Ericksen fluids in a 

porous medium. Recently, Rana and Thakur (2012) studied the thermal instability of 

couple-stress fluid permeated with suspended particles saturating a porous medium. The 

interest for investigations of non-Newtonian fluids is also motivated by a wide range of 

engineering applications, which include ground pollution by chemicals that are non-

Newtonian, such as lubricants and polymers and in the treatment of sewage sludge in 

drying beds. Recently, polymers have been used in agriculture, communications 

appliances and in bio-medical applications. Examples of these applications are filtration 

processes, packed bed reactors, insulation systems, ceramic processing, enhanced oil 

recovery and chromatography, etc. Bearing in mind the importance of the various 

applications mentioned above, the objective of the present paper is to study the effect of 

suspended particles on thermal convection in a Rivlin-Ericksen elastico-viscous fluid in 

a Brinkman porous medium. This necessitates an additional parameter, namely the 

Darcy number. 

 

MATHEMATICAL MODEL AND PERTURBATION EQUATIONS 

 

Consider an infinite, horizontal, incompressible Rivlin-Ericksen elastico-viscous fluid 

of depth d, bounded by the planes z = 0 and z = d in an isotropic and homogeneous 

medium of porosity   and permeability k1, which is acted upon by gravity g(0, 0, -g). 

This layer is heated from below, such that a steady adverse temperature gradient

 
dz

dT  is maintained. The character of equilibrium of this initial static state is 

determined by supposing that the system is slightly disturbed and then by following its 

further evolution. 

Let             , T, α,  ̃ and v(0, 0, 0), denote the density, kinematic viscosity, 

kinematic viscoelasticity, pressure, medium porosity, temperature, thermal coefficient 

of expansion, effective viscosity of pure fluid and velocity of the fluid, respectively. 

The conservation of momentum, mass, temperature and equation of state for a 

Rivlin-Ericksen elastico-viscous fluid in a Brinkman porous medium are expressed in 

Eqs (1)-(4), respectively. 
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where the suffix zero refers to values at the reference level z = 0. 
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Figure 1. Schematic sketch of physical situation. 

 

Here   ( ̅  ) and  ( ̅  ) denote the velocity and number density of the particles, 

respectively,         , where η is the particle radius, K is the Stokes drag 

coefficient,    (     ) and  ̅  (     ). 
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which is constant, κ is the thermal diffusivity,      ;          denote the density and heat 

capacity of solid (porous) matrix and fluid, respectively. If mN is the mass of particles 

per unit volume, then the equations of motion and continuity for the particles are 

expressed in Eq. (5) and Eq. (6), respectively. 
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The presence of particles adds an extra force term proportional to the velocity 

difference between the particles and the fluid and appears in the equation of motion (Eq. 

(1)). Because the force exerted by the fluid on the particles is equal and opposite to that 

exerted by the particles on the fluid, there must be an extra force term, equal in 

magnitude but opposite in sign, in the equations of motion for the particles (Eq. (6)). 

The buoyancy force on the particles is neglected. Inter-particle reactions are not 

considered either because the distance between the particles is quite large compared 

with their diameters. These assumptions have been used in writing the equations of 

motion (Eq. (6)) for the particles. The initial state of the system is taken to be a 

quiescent layer (no settling) with a uniform particle distribution number. The initial 

state is defined as Eq. (7). 

 

    (     ),          ,      (     )        (7) 

 

This is an exact solution to the governing equations. Let v(u,v,w), θ,    and    

denote the perturbations in the fluid velocity v(0,0,0), temperature T, pressure p and 

density  , respectively. The change in density    caused by perturbation θ in 

temperature is given by Eq. (8). 

 

g = g(0,0,-g)

Heated from below

Schematic Sketch of Physical Situation
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                                          (8) 

 

The linearised perturbation equations governing the motion of the fluid are as follows: 
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Where   
     

    
 and w, s are the vertical fluid and particles velocity. 

 

In Cartesian form, Eqs (9)-(11) with the help of Eq. (8) can be expressed as Eq. (12) and 

Eq. (13). 
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Operating Eqs (12) and (13) by 
 

  
 and 

 

  
, respectively and adding and using Eq. (8), we 

get: 
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Operating Eqs (14) and (17) by (   
  

   ) and 
 

  
, respectively and adding to eliminate 

   between Eqs (14) and (17), we get: 
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Where    
  

    
  

    
  

    . 

 

THE DISPERSION RELATION 
 

Following the normal mode analyses, we assume that the perturbation quantities have x, 

y and t dependence of the form:  

  [   ]  [ ( )  ( )]   (          )                  (19) 
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where l and m are the wave numbers in the x and y directions,   (     )
 

 ⁄  is the 

resultant wave number and n is the frequency of the harmonic disturbance, which is a 

complex constant. 

 

Using Eq. (19) in Eqs (18) and (16) becomes: 
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Eqs (20) and (21) in non-dimensional form, become: 
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where        
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   is the dimensionless medium permeability, 

   
 

 
 is the thermal Prandtl number and    

 ̃  

    is the Darcy number modified by 

the viscosity ratio. 

 

Eliminating Θ between Eqs (22) and (23), we obtain: 
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where   
     

  
 is the thermal Rayleigh number. 

 

Assume that the temperature at the boundaries remains fixed, the fluid layer is 

confined between two boundaries and that the adjoining medium is electrically non-

conducting. The boundary conditions appropriate to the problem are (Chandrasekhar, 

1981): 

 

  W = D
2
W = D

4
W=    at z = 0 and 1        (25) 

 

 The case of two free boundaries, although a little artificial, is the most 

appropriate for stellar atmospheres. Using the boundary conditions (Eq. (25)), all the 

even order derivatives of W must vanish for z = 0 and z = 1 and hence, the proper 

solution of W characterising the lowest mode is:  

 

           ; W0 is a constant                    (26) 

 

Substituting Eq. (27) in Eq. (25), we get: 
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where    
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 ,        , B = b+1. 

  

Eq. (27) is the required dispersion relation accounting for the onset of thermal 

convection in a Rivlin-Ericksen elastico-viscous fluid permeated with suspended 

particles in a Brinkman porous medium. 

 

STABILITY OF THE SYSTEM AND OSCILLATORY MODES 

 

The possibility of oscillatory modes in a Rivlin-Ericksen elastico-viscous fluid due to 

the presence of suspended particles, viscoelasticity, medium permeability and gravity 

field will be examined. Multiply Eq. (22) by W
*
 the complex conjugate of W, 

integrating over the range of z and making use of Eq. (23) with the help of boundary 

conditions (Eq. (25)), we obtain: 
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 The integral part I1-I4 are all positive definite. Putting       in Eq. (28), where 

   is real and equating the imaginary parts, we obtain: 
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Eq. (29) implies that      or     , which means that the modes may be non-

oscillatory or oscillatory. The oscillatory modes are introduced due to the presence of 

viscosity, viscoelasticity, suspended particles and medium permeability, which were 

non-existent in their absence. 

 

THE STATIONARY CONVECTION 

 

For stationary convection, putting     in Eq. (27), we obtain: 
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Eq. (30) expresses the modified Rayleigh number R1 as a function of the 

dimensionless wave number x and the parameters B,    
 and P and the Rivlin-Ericksen 

elastico-viscous fluid behaves like an ordinary Newtonian fluid because the elastico-

viscous parameter F vanishes with  . To study the effects of suspended particles, the 
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Darcy number and medium permeability, the behaviour of 
   

  
,
   

    

 and 
   

  
 has been 

examined analytically. From Eq. (30), we get: 
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which is negative. Hence, the suspended particles have a destabilising effect on the 

thermal convection in a Rivlin-Ericksen elastico-viscous fluid in a Brinkman porous 

medium. This destabilising effect is in agreement with earlier work (Scanlon & Segel 

1973; Sharma & Sharma, 1991; Sharma & Sunil, 1994; Rana & Kumar, 2010; Rana, 

2012). 

 

From Eq. (30), we get: 
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which is positive, implying thereby the stabilising effect of the Darcy number on the 

thermal convection in a Rivlin-Ericksen elastico-viscous fluid permeated with 

suspended particles in a Brinkman porous medium. This stabilising effect of the Darcy 

number is in agreement with the earlier work of Rana (2011). 

 

It is evident from Eq. (31) that: 
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From Eq. (33), it is observed that medium permeability has a destabilising effect 

on the thermal convection in a Rivlin-Ericksen elastico-viscous fluid permeated with 

suspended particles in a Brinkman porous medium. This destabilising effect is in 

agreement with earlier work (Scanlon & Segel, 1973; Sharma & Sharma, 1991; Sharma 

& Sunil; 1994, Rana & Kumar, 2010; Rana, 2012). 

 

 
 

Figure 2. Variation of Rayleigh number    with suspended particles B for P = 2 and 

   
    for fixed wave numbers x = 0.2, x = 0.5 and x = 0.8. 

The dispersion relation in Eq. (30) is analysed numerically to depict the stability 

characteristics. In Figure 2, the Rayleigh number    is plotted against suspended 

particles B for P = 2 and    
    for fixed wave numbers x = 0.2, x = 0.5 and x = 0.8. 
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This shows that the suspended particles have a destabilising effect on the thermal 

instability of a Rivlin-Ericksen elastico-viscous fluid in a Brinkman porous medium for 

fixed wave numbers x = 0.2, x = 0.5 and x = 0.8, which clearly verifies the results 

numerically, as derived in Eq. (31). In Figure 3, the Rayleigh number    is plotted 

against the Darcy number    
for P = 2, B = 3 for fixed wave numbers x = 0.2, x = 0.5 

and x = 0.8. This shows that the Darcy number has a stabilising effect on the thermal 

convection in a Rivlin-Ericksen elastico-viscous fluid permeated with suspended 

particles in a Brinkman porous medium, which clearly verifies the results numerically, 

as derived in equation (32). In Figure 4, the Rayleigh number    is plotted against 

medium permeability P for    
    and B = 3 for fixed wave numbers x = 0.2, x = 0.5 

and x = 0.8. This shows that medium permeability has a destabilising effect on the 

thermal convection in a Rivlin-Ericksen elastico-viscous fluid permeated with 

suspended particles in a Brinkman porous medium, which clearly verifies the results 

numerically, as derived in Eq. (33). 

 

 
 

Figure 3. Variation of Rayleigh number    with Darcy number    
 for P = 2 and B = 3 

for fixed wave numbers x = 0.2, x = 0.5 and x = 0.8. 

 

 
 

Figure 4. Variation of Rayleigh number    with medium permeability P for B = 3 

and    
    for fixed wave numbers x = 0.2, x = 0.5 and x = 0.8. 
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CONCLUSIONS 

 

The effect of suspended particles on thermal convection in a Rivlin-Ericksen elastico-

viscous fluid heated from below in a Brinkman porous medium has been investigated. 

The dispersion relation, including the effects of suspended particles, Darcy number, 

medium permeability and viscoelasticity on the thermal convection in a Rivlin-Ericksen 

fluid in porous medium is derived. From the analysis, the main conclusions are as 

follows: 

 

(i) For the case of stationary convection, a Rivlin-Ericksen elastico-viscous fluid 

behaves like an ordinary Newtonian fluid as elastico-viscous parameter F 

vanishes with  . 

(ii) The expressions for 
   

  
, 

   

    

 and 
   

  
 are examined analytically and it has been 

found that the Darcy number has a stabilising effect, whereas the suspended 

particles and medium permeability have a destabilising effect on the system.  

(iii) The effects of suspended particles, Darcy number and medium permeability on 

thermal convection in a Rivlin-Ericksen elastico-viscous fluid permeated with 

suspended particles in a Brinkman porous medium have been analysed. 

(iv) The oscillatory modes are introduced due to the presence of viscoelasticity, 

suspended particles, gravity field and medium permeability, which were non-

existent in their absence. 
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NOMENCLATURE 

 

   Dimensionless medium permeability   Gravitational acceleration 

g Gravitational acceleration vector m Mass of suspended particle 

       Modified Darcy number  p  Pressure  

   Stokes drag coefficient     Thermal Prandtl number 

         Velocity of fluid                                    Velocity of suspended particles 

  Wave number of disturbance 

Greek Symbols 

  Adverse temperature gradient   ̃ Effective viscosity of porous 

medium 

𝝆 Fluid density    μ  Fluid viscosity    

   Fluid viscoelasticity     Kinematic viscosity  

  

   Kinematic viscoelasticity             Medium porosity 

θ Perturbation in temperature   η Radius of suspended particles   

  Thermal diffusitivity            Thermal coefficient of expansion 

 
 


