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ABSTRACT 
 

This paper presents the numerical study of two-dimensional forced convection heat 
transfer for staggered tube banks in cross flow under incompressible, steady-state 
conditions. This system is solved for body-fitted coordinates using the finite volume 
method for flow over a bundle of cylindrical tubes. A constant heat flux is imposed on 
the surface of the tubes as the thermal boundary condition. The type of arrangement 
considered is a set of staggered tubes. Ratios of longitudinal pitch to tube diameter 
(ST/D) of 1.25, 1.5, and 2 are considered. Reynolds numbers are varied from 25 to 250 
and the Prandtl number is taken as 0.71. Velocity field vectors, temperature contours, 
and the local and average Nusselt numbers are analyzed in this paper. It can be seen that 
the predicted results are in good agreement with experimental and numerical results 
obtained previously. The obtained results show that the heat transfer rate increases with 
a reduction in the step of the longitudinal tube diameter. The local heat transfer depends 
strongly on the Reynolds number. The highest values are obtained at the surface 
opposite to the direction of flow. The heat transfer rate is insignificant in the areas of 
recycling. 
 
Keywords: Forced convection; cylindrical tube; staggered arrangement; body-fitted 
coordinates; finite volume method. 
 

INTRODUCTION 
 

The flow of fluids and the heat transfer in tube banks represent an idealization of many 
industrially important processes. Tube bundles are employed widely in cross-flow heat 

exchangers; the design of which is still based on empirical correlations of heat transfer 
and pressure drop. Heat exchangers with tube banks in cross-flow are of great practical 
interest in many thermal and chemical engineering processes (Buyruk, 2002; Mandhani, 
Chhabra, & Eswaran, 2002; Incropera, Dewitt, Bergman, & Lavine, 2007; Liang & 
Papadakis, 2007; Al-Doori, 2011; Syam Sundar & Sharma, 2011; Naga Sarada, Sita 
Rama Raju, Kalyani Radha, & Syam Sunder, 2012). There have been several two-
dimensional numerical studies of pressure drop, heat transfer, and incompressible 
laminar flow for staggered tube arrays in cross-flow (Yuan, Tao, & Wang, 1998; 
Rahmani, Mirzaee, & Shirvani, 2005; Khan, Culham, & Yovanovich, 2006; Marchi & 
Hobmeir, 2007). A low Reynolds number and a Prandtl number equal to 0.71 have been 
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considered in general (Chang, Beris, & Michaelides, 1989; Wang & Georgiadis, 1996). 
An experimental study was carried out to investigate the heat transfer and the flow 
characteristics from one tube within a staggered tube bundle and within a row of similar 
tubes. Variation of a local Nusselt number and local pressure coefficients were shown 
with different blockages and Reynolds numbers (Buyruk, Johnson, & Owen, 1998; 
Buyruk, 1999; Matos, Vargas, Laursen, & Saboya, 2001; Matos, Vargas, Laursen, & 
Bejan 2004). Experimental and numerical studies of pressure drop and heat transfer 
through bundles of parallel cylinders have been performed, in which the numerical 
results cover the range 1 ≤ ReD ≤ 30, 0.72 ≤ Pr ≤ 100, 0.6 ≤   ≤ 0.95, and 0 

≤ β ≤ 60°, 

where   is the porosity of the bundle as a saturated porous medium and β is the angle to 
the cylinder centerline. Experimental measurements have been obtained in the range of 
1 ≤ ReD ≤ 30, 0.84 ≤   ≤ 0.92, and 0 ≤ β ≤ 60. The results show that significant errors 

may occur if the available large ReD information is extrapolated to the domain covered 
by this study (Fowler & Bejan, 1994). This is an experimental, numerical and analytical 
study of the optimal spacing between cylinders in cross-flow forced convection. The 
experimental ReD range is 50–4000, and in the second part, similar results are developed 
based on numerical simulations for Pr = 0.72 and 40 ≤ ReD ≤ 200. The experimental and 

numerical results for optimal spacing and maximum thermal conductance are explained 
and correlated analytically by intersecting the small- and large-spacing asymptotes of 
the thermal conductance function (Stanescu, Fowler, & Bejan, 1996; Rosdzimin, 
Zuhairi, & Azwadi, 2010). A calculation procedure for two-dimensional elliptic flow is 

applied to predict the pressure drop and the heat transfer characteristics of laminar and 
turbulent flow of air across the tube banks. The theoretical results of the present model 
are compared with previously published experimental data (Wilson & Bassiouny, 2000). 
Cross-flow over tube banks is commonly encountered in practice in heat transfer 
equipment. The average Nusselt number increases by more than 30% and 65% on the 
second and third tubes, respectively, in comparison with that of the first tube (Yoo, 
Kwonb, & Kim, 2007). Tahseen, Ishak & Rahman (2012a,b, 2013) presented numerical 
studies of incompressible, steady-state flow using body-fitted coordinates. The first 
study considers heat transfer over two flat staggered tubes and the second study 
considers heat transfer over an in-line bank of circular tubes. The two studies show the 
effect of the Reynolds number on the Nusselt number, and that the Nusselt number 
increases with an increase of Reynolds number. The objective of this study is the 
numerical simulation of two-dimensional laminar incompressible flow and heat transfer 
over a staggered circular tube bank. The local and average heat transfer characteristics 
for staggered tube banks are investigated in the present study.  
 

METHODOLOGY 
 
The investigated problem is a two-dimensional staggered tube bank with tube diameters 
of 15 mm and with the longitudinal distance between two consecutive tubes (SL) of 15 
mm. The equations governing the conservation of continuity, momentum, and energy, 
in Cartesian vector notation, assume constant thermophysical properties of the fluid for 
steady-state incompressible flow. The physical system considered in the present study is 
displayed in Figure 1 (Bejan, 2004): 

Continuity Equation:  0
U V

X Y

 
 

 
                                                                             (1) 
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Momentum (Navier-Stokes):  
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Energy:                                    
2 2
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                       (4) 

The dimensionless variables have been defined based on appropriate physical 
scales as Eq. (5):  
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Figure 1. Schematic of staggered tube banks and computational domain. 

 
The schematic of staggered tube banks and the computational domain are shown 

in Figure 1. The boundary conditions are as follows: 
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The heat transfer coefficient (h) can be expressed in dimensionless form by the 

local and average Nusselt numbers, Nu and Nu , which are defined as Eq. (6) (Chen & 
Wung, 1989): 
 

   ,
hD hD

Nu Nu Nuds ds
k n k  




   

    (6) 

 
The set of conservation Eqs. (2–5) can be written in general form in Cartesian 

coordinates as Eq. (7): 
 

( ) ( )U V
S

X Y X X Y Y 

           
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        
 (7) 

 
The continuity equation, Eq. (1) has no diffusion and source terms. It will be 

used to derive an equation for the pressure correction. The grid generation scheme based 
on elliptic partial differential equations is used in this study to generate the curvilinear 
coordinates. Eq. (7) can be transformed from the physical domain to the computational 
domain according to the following transformation ( , ), ( , )x y x y      (Thompson, 
Warsi, & Martin, 1985). The final form of the transformed equation can be written as 
Eq. (8): 
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where 
 

1 2

2 2 2 2

, ,

, ,

Y X X Y X Y Y X
G U V G V U J

x y x x y y x y

       

  
       

        
       

        


                   
                                    

 (9) 

 
Eq. (8) was solved numerically by using a control volume-based finite difference 

method. It was solved by the marching type procedure that involves a series of two-
dimensional elliptic problems in the cross-stream plane. The marching step size is 
1 × 10-4 along the axial distance. At each marching step, the strong coupling of pressure 
and velocity in the cross section was calculated by the SIMPLER-algorithm on a 
collocated non-orthogonal grid. It is used to adjust the velocity field to satisfy the 
conservation of mass (Patankar, 1980). For the computational calculations, a computer 
code was prepared in FORTRAN-90. In the numerical calculation, a 146 × 21 grid 
arrangement is found to be sufficient for a grid-independent solution, following which 
the 2D algebraic grid is generated. 



 
 

Laminar Forced Convection Heat Transfer over Staggered Circular Tube Banks: A CFD Approach 

422 

 

 
Figure 2. Schematic of grid systems generated by body-fitted coordinates. 

 
VALIDATION 

 
The numerical model was validated against previously published benchmark problems. 
The fluid flow and heat transfer over a row of staggered circular tubes subjected to 
constant wall temperature and constant heat flux were predicted. The Nusselt number 
for the fully developed region between two tubes subjected to constant wall temperature 
was obtained from previous literature. Figure 3 shows a comparison between the present 
study with previous literature (Buyruk, 2002; Kaptan, Buyruk, & Ecder, 2008) for the 
local Nusselt number with Re = 120, Pr = 0.71, and ST/D = 2.0. It can be seen that 
excellent agreement is achieved between the present results and the numerical results of 
Buyruk (2002) and Kaptan et al. (2008), for the local Nusselt number distribution 
circumference of the first tube. 
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Figure 3. Comparison between the present study with previous literature (Buyruk, 2002; 
Kaptan et al., 2008) for local Nusselt number with Re = 120, Pr = 0.71 and  

ST/D = 2.0 
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RESULTS AND DISCUSSION 
 
Numerical solutions are obtained of the convective heat transfer of a cross-tube 
staggered bundle, in which the transverse pitch (ST) is varied between 1.25, 1.5, and 2.0. 
The range of Reynolds numbers is 25 to 250. Heat flux (qf) in the surface tubes also 
varies between 50, 100, and 130 W/m2. The normalized temperature lines (isotherms) 
are presented in the temperature distributions within a range of 0 to 1. Figures 4–6 show 
the temperature distribution for various ratios of longitudinal pitch to tube diameter 
ST/D, Reynolds numbers, and heat flux in the tube surface.  
 

 
 

(a) 

 
 

(b) 

 
(c) 

 
Figure 4. Isothermal line at ST/D = 1.25 and Reynolds number of (a) 25, (b) 100, and (c) 

250. 
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The plots exhibit low fluid temperature at the inlet increasing as the fluid 
reaches the hot tube surface, revealed by the wavy motion of the stream and the 
isolation of the separation zone behind the cylinder. The temperature contours are 
packed on the upstream surface and are diffused downstream. In the separation zone, 
the thermal layer is relatively thick, particularly near the separation point. As the 
Reynolds number increases, the lower value isotherms penetrate deeper, which means 
the colder fluid is getting closer to the hot surface; because of this behavior, the heat 
transfer is increased. 

 

 
(a) 

 
(b) 

 
 

Figure 5. Isothermal line at ST/D = 1.50 with Reynolds number of (a) 25, (b) 100, and 
(c) 250. 
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(a) 

 
 

(b) 
 

 
 

(c) 
 

Figure 6. Isothermal line at ST/D = 2.0 and Reynolds number for (a) 25, (b) 100, and (c) 
250. 



 
 

Laminar Forced Convection Heat Transfer over Staggered Circular Tube Banks: A CFD Approach 

426 

 

Figure 7 presents the relationship between the local Nusselt number and the 
angle of a round tube surface for various Reynolds number and locations of the tube. A 
laminar boundary layer develops from the front stagnation point for a cylinder in cross-
flow and grows in thickness around the cylinder. The maximum heat transfer rate is 
located close to the front stagnation point, and the local Nusselt number decreases with 
the angle. The position of the minimum local Nusselt number is not fixed around 153 
deg. at Re = 25, 140 deg. at Re = 100, and 135 deg. at Re = 250. It is noted that the 
minimum values of the local Nusselt number are at the third and fourth tubes. Figure 8 
presents the effect of the mean Nusselt number with Reynolds number for the first tube 
at Pr = 0.71. It can be seen that the mean Nusselt number is increased with the increase 
of Reynolds number. Furthermore, as the ratio of longitudinal pitch to tube diameter 
ST/D increases, the variation in Nusselt number becomes more significant for a higher 
Reynolds number. 
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Figure 7. Local Nusselt number distribution at the surface angle of the tube for ST/D = 
2.0, for Reynolds number of (a) 25, (b) 100, and (c) 250. 
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Figure 8. Variation of average Nusselt number with Reynolds number for the first tube 
at Pr = 0.71 with change of transverse pitch. 

 
CONCLUSION 

 
The flow of fluids and the heat transfer in tubes in the regulation of cross-flow are of 
great importance in many engineering applications. Two-dimensional steady state and 
incompressible laminar flow is investigated numerically for staggered tube arrays in 
cross-flow. A finite difference method is used numerically to solve the governing 
Navier-Stokes and energy equations. The results show that the behavior of flow and 
heat transfer of the first tube is similar to the behavior of flow and heat transfer of a 
single tube. The form of flow and temperature distribution is affected by the Reynolds 
number. 
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NOMENCLATURES 

 
Jacobian of the transformation J specific heat, J/Kg K CP 

local and average Nusselt number 

Nu ,

Nu
 

diameter of tube, m D 

pressure, N/m2 p contravariant velocity components 
G1, 
G2 

dimensionless pressure P 
local and average convection he-at 
transfer coefficient, W/m2K h ,h  

Prandtl number Pr 
thermal conductivity of the fluid 
W/m K 

k 

dimensionless temperature   heat flux, W/m2 qf 

dynamic viscosity, N s/m2   Reynolds number based on tube 
diameter 

ReD 

kinematic viscosity, m2 s   temperature, oC T 
density kg/m3   source term S 
curvilinear coordinates ,   longitudinal distance between two SL 
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consecutive tubes, m 

general dependent variable   transverse distance between two 
consecutive tubes, m 

ST 

the coefficients of transformation 
α, 

,  
velocity components, m/s u, v 

boundary contour   dimensionless velocity 
components 

U, V 

Subscripts Cartesian coordinates, m x, y 

free stream   
dimensionless Cartesian 
coordinates 

X, Y 

the infinitesimal distance on the 
contour 

s Greek symbols 

wall of tube w thermal diffusivity, m2/s   
  diffusion coefficient   

 
 

 


