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ABSTRACT 

 

This paper presents a finite element analysis of the stress distribution in the end milling 

operation of nickel-based superalloy HASTELLOY C-2000. Commercially available 

finite element software was used to develop the model and analyze the distribution of 

stress components in the machined surface of HASTELLOY C-22HS following end 

milling with coated carbide tools. The friction interaction along the tool-chip interface 

was modeled using the Coulomb friction law. It was found that the stress had lower 

values under the cut surface and that it increased gradually near the cutting edge. 
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INTRODUCTION 

 

In many industries, nickel-based alloys represent an important segment of structural 

materials. Critical components made of these alloys are often relied upon to function 

satisfactorily in corrosive environments. Highly corrosion-resistant alloy castings are 

often the subject of major concern because failures of cast components can lead to 

significant downtime costs and operating problems (Strenkowski & Carroll, 1985). Over 

the years, nickel-chromium-molybdenum/tungsten alloys have proven to be among the 

most reliable and cost-effective materials for aggressive seawater applications with 

excellent resistance to localized corrosive attack (pitting, crevice corrosion). Among 

these alloys, HASTELLOY C-types (C, C-4, C-276, and C-22) are often used to serve 

the above-mentioned purposes. As these alloys are commonly subject to further 

machining after casting, it becomes vital to understand the changes in properties 

imparted to the machined surfaces following cutting operations such as end milling. For 

this reason, the finite element methodology is used in this study to determine the 

machined surface stress characteristics. In the past decade, the finite element method, 

based on the updated-Lagrangian formulation, has been developed to analyze metal 

cutting processes (Strenkowski & Carroll, 1985; Shih, Chandrasekar & Yang, 1990). 

Several special finite element techniques, such as element separation (Komvopoulos & 

Erpenbeek, 1991; Shih & Yang, 1993), the modeling of worn cutting tool geometry 

(Komvopoulos & Erpenbeek, 1991; Shih & Yang, 1993; Shih, 1996), mesh rezoning 

(Komvopoulos & Erpenbeek, 1991; Ueda & Manabe, 1993), and friction modeling 

(Strenkowski & Carroll, 1985; Komvopoulos & Erpenbeek, 1991), etc., have been 

implemented to improve the accuracy and efficiency of finite element modeling. 

Detailed work-material modeling, which includes the coupling of temperature, strain 

rate, and strain-hardening effects, has been applied to model material deformation (Shih 

et al., 1990; Shih & Yang, 1993; Shih, 1996). An early analytical model for predicting 

residual stresses was proposed by Okushima and Kakino (1971), in which residual 
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stresses were related to the cutting force and temperature distribution during machining. 

In another analytical model, a relation was derived between residual stresses and the 

hardness of the workpiece (Wu & Matsumoto, 1990). Shih and Yang (1993) conducted 

a combined experimental/computational study of the distribution of residual stresses in 

a machined workpiece. Liu & Guo (2000) used the finite element method to evaluate 

residual stresses in a workpiece. They also observed that the magnitude of residual 

stress is reduced when a second cut is made on the cut surface. Liu and Barash (1982) 

measured the residual stress on the workpiece subsurface with consideration of tool 

flank wear. Their findings indicated that under the condition of a lower cutting speed, 

the mechanical load had a greater impact on residual stress, whereas the thermal effect 

become the major factor affecting residual stress at higher cutting speed. Lee and 

Shaffer (1951) proposed a shear-angle model based on the slip-line field theory, which 

assumes a rigid perfectly plastic material behavior and a straight shear plane. Kudo 

(1965) modified the slip-line model by introducing a curved shear plane to account for 

the controlled contact between the curved chip and straight tool face. Henriksen (1951) 

conducted a series of tests to understand residual stresses in the machined surface of 

steel and cast iron parts under various cutting conditions. Kono, Hara, Yazu, Uchida, 

and Mori (1980), and Tonshoff, Wobker, and Brandt (1995) revealed that residual 

stresses are dependent on the cutting speed. Matsumoto, Barash & Liu (1986) and Wu 

and Matsumoto (1990) observed that the hardness of the workpiece material has a 

significant influence on the residual stress field. Konig, Berktold, and Koch (1993) 

showed that friction in metal cutting also contributes to the formation of residual 

stresses.  

 

FINITE ELEMENT MODEL 

 

The finite element model (FEM) is composed of a deformable workpiece and a rigid 

tool. The tool penetrates through the workpiece at a constant speed and constant feed 

rate. The model assumes plane-strain conditions because generally, the depth of cut is 

much greater than the feed rate. The FEM used in this study is based on commercially 

available finite element software called “Thirdwave AdvantEdge”. It uses six-noded 

quadratic triangular elements by default. AdvantEdge is an automated program and it is 

sufficient to input process parameters in order to construct a two-dimensional 

simulation of an orthogonal cutting operation. Thermal boundary conditions for 

Thirdwave AdvantEdge are given as: 

 

1. The heat is generated because of the heavy plastic work done on the workpiece. Its 

formula is given in Eq. (1): 
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where W
P 

is the rate of plastic work, f is the fraction of plastic work converted into heat 

(assumed to be 0.9), m is the mechanical equivalent of heat (taken as 1), and ρ is the 

density of the workpiece material (8.6 g/cm
3
) 

 

2. The heat is generated because of friction between the chip and the rake face of the 

tool according to Eq. (2): 

 



 

 

Kadirgama et al. / Journal of Mechanical Engineering and Sciences     1(2011)     37-46 

39 

 

 mVFq rfr                                                    (2) 

 

where Ffr is the friction force, Vr is the relative sliding velocity between the tool and 

chip, and m is the mechanical equivalent of heat (m = 1) 

 

3. The generated frictional heat is distributed to the chip and tool according to Eq. (3): 
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where Qchip is the heat given to the chip, Qtool is the heat given to the tool, k is the 

conductivity, ρ is the density, and c is the heat capacity. 

 

 
 

Figure 1. Model for milling 

 

Certain assumptions are made in simulating the complex procedure of metal 

cutting with FEM. These assumptions are used to define the problem to be solved, as 

well as to apply the boundary and loading conditions: 

 

1. The cutting speed is constant. 

2. The width of cut is larger than the feed (plane strain condition), and both are 

constant. 

3. The cutting velocity vector is normal to the cutting edge. 

4. The workpiece material is a homogeneous polycrystalline, isotropic, and 

incompressible solid. 

5. The workpiece is set at a reference temperature of 20 °C at the beginning of 

simulation. 

6. The machine tool is perfectly rigid and there is no influence of machine tool 

dynamics on the machining. 

7. There is constant friction between the tool-chip interaction and the tool-

workpiece interaction. 



 

 

Finite Element Analysis of HASTELLOY C-22HS in End Milling 

40 

 

Figure 1 shows the Thirdwave AdvantEdge model for a milling operation and 

Figure 2 shows an example of a visual simulation of residual stresses induced after 

milling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Model of residual stress 

 

WORKPIECE AND TOOL MATERIAL MODELING 

 

The workpiece material used for the simulation is HASTELLOY C-22HS, the cutting 

tool is carbide coated with TiALN and with a 20° rake angle. After each pass (80 mm), 

the simulation was stopped. AdvantEdge uses an analytical formulation for material 

modeling. In a typical machining event, in the primary and secondary shear zones, very 

high strain rates are achieved, whereas the remainder of the workpiece deforms at 

moderate or low strain rates. In order to account for this, Thirdwave AdvantEdge 

incorporates a stepwise variation of the rate sensitivity exponent: 
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where   is the effective von Mises stress, f  is the flow stress, p  is the accumulated 

plastic strain, p

o  is a reference plastic strain rate, 1m  is the strain rate sensitivity 

exponents, and t  is the threshold strain rate that separates the two regimes. In the 

calculations, a local Newton-Raphson iteration is used to compute p

o  according to the 

low rate equation, which switches to the high rate equation if the result lies above t . 

f , which is used in Eq. (5), is given as: 
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where T is the current temperature, 0  is the initial yield stress at the reference 

temperature T0, 
p

0  is the reference plastic strain, n is the hardening exponent, and  T  
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is the thermal softening factor. In the present study, it is assumed that the tool is not 

plastifying; hence, it is considered as an absolutely rigid body. 

 

Workpiece Material 

 

The properties of the workpiece material (HASTELLOY C-22HS) are shown in Tables 

1 and 2, and the cutting tool properties and simulation are shown in Tables 3 and 4. 

 

Table 1. Chemical composition for HASTELLOY C-22HS. 

 

Ni Cr Mo Fe Co W Mn Al Si C B 

BAL (%) 21 17 2 1 1 0.80 0.50 0.08 0.01 0.01 

 

Table 2. Physical properties of HASTELLOY C-22HS at room temperature 

 

Properties Value  

Density (g/cm
3
) 8.6 

Thermal Conductivity (W/m.°C) 11.8 

Mean Coefficient of Thermal Expansion (μm/m.°C) 11.6 

Thermal Diffusivity (cm
2
/s) 0.0334 

Specific Heat (J/kg.°C) 412 

Young Modulus (GPa) 223 

 

Table 3. Cutting tool properties 

Code 

name 
Composition (%) Coating 

Thickness 

(μm) 

 %Co %WC %Cr3C2 %TaC %TiC %Nbc   

KC520M 6 93.5 0.5 - - - 
PVD 

TiAlN 
3.5 

 

Table 4. Simulation conditions 

 

Simulation No. Cutting speed Feed rate Axial depth 

1 140 0.1 2 

2 140 0.2 1 

3 100 0.15 1 

4 100 0.15 2 

5 140 0.15 1.5 

6 100 0.1 1.5 

7 180 0.1 1.5 

8 180 0.15 2 

9 180 0.2 1.5 

10 140 0.2 2 

11 180 0.15 1 

12 140 0.15 1.5 

13 140 0.1 1 

14 100 0.2 1.5 

15 140 0.15 1.5 
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RESULTS AND DISCUSSION 

 

The von Mises stress V , is used to estimate yield criteria for ductile materials. It is 

calculated by combining stresses in two or three dimensions with the result compared 

with the tensile strength of the material loaded in one dimension. The von Mises stress 

is also useful for calculating the fatigue strength (Schey, 2000). 

 

The von Mises stress in three dimensions is expressed as (Schey, 2000): 
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where 321 ,,   are the principal stresses. Figure 3 shows the von Mises stress for 

simulation no.9 (Cutting speed 180 m/min, feed rate 0.15 mm, and axial depth 2.0 mm) 

after 80 mm. Most of the tensile stress V  appears at the cutting tool edge. The von 

Mises criterion states that failure occurs when the energy of distortion reaches the same 

value as the energy for yield/failure in uniaxial tension. Mathematically, this is 

expressed as (Schey, 2000): 
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The yield strength and ultimate tensile strength for the coated carbide cutting tool used 

in this simulation are 600 and 800 MPa, respectively. The von Mises stress at region 9 is 

4488 MPa, which is higher than the yield strength and the ultimate tensile strength of 

the coated cutting tool. This stress can cause permanent damage to the cutting tool 

because this stress is beyond the ultimate tensile strength and yield strength. Cutting 

speed, feed rate, and axial depth for this simulation are very high and this causes the 

high stress at the cutting edge, because high cutting speed, feed rate, and axial depth can 

cause high force in milling (Alauddin, Mazid, EL Baradi, & Hashmi, 1998; Kadirgama 

& Abou-El-Hossein, 2005). The radial depth for every simulation is 3.5 mm. This factor 

also contributes to higher stress. At region 1, at the cutting tool and chip contact, the 

von Mises stress is 501 MPa, whereas the yield strength and ultimate strength of the 

workpiece are 359 and 759 MPa. The workpiece starts to deform because the stress is 

above its yield strength. 

Figure 4 shows the von Mises stress for simulation no. 3 (Cutting speed 100 

m/min, feed rate 0.2 mm/rev, axial depth 1.5 mm). The stress at the cutting tool edge 

(region 5) is 1345 MPa. The von Mises stress is lower compared with that in simulation 

run no. 9. However, even though the stress is still higher than the yield strength and 

ultimate tensile strength, the damage should be less severe compared with simulation 

no.9. At region 3, the stress for the contact point of the cutting tool and chip is 577 MPa. 

This value is almost the same as in simulation no. 9. From the von Mises stress 

distribution, shown in Figures 3 and 4, it can be seen that most of the tensile stress V  is 

located at the edge of the cutting tool. The stress distribution also shows that the stress 

is lower under the cut surface and that it increases gradually near the cutting edge. High 

force is needed at the tool edge for workpiece penetration, and this indirectly increases 

the stress at the tool edge. This distribution of the stress is the same for both cases. The 

http://en.wikipedia.org/wiki/Yield
http://en.wikipedia.org/wiki/Ductile
http://en.wikipedia.org/wiki/Stress_%28physics%29
http://en.wikipedia.org/wiki/Tensile_strength
http://en.wikipedia.org/wiki/Fatigue_%28material%29
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velocity vectors around the tool tip for simulation no. 9, shown in Figure 5, clearly show 

the plastic flow of the material around the cutting edge. The same trend of flow was also 

observed by Movahhedy, Gadala, & Altintas (2000). Figure 6 shows the 3D picture for 

von Misses stress distribution for simulation no. 9. Table 3 shows the average value of 

the von Mises stress at the cutting tool edge for every simulation. This value will be 

investigated through statistical methods to determine the relationship between the 

variables (cutting speed, feed rate and axial depth) and the response (von Mises Stress). 

 

 
  

Figure 3. von Mises stress for simulation no. 9 

 

 
 

Figure 4. von Mises stress for simulation no. 3 
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Figure 5. Velocity vectors for simulation no. 9 

 

 
 

Figure 6. 3D picture for von Misses stress distribution for simulation no. 9 

 

CONCLUSION 

 

In the milling operation, cutting speed, feed rate, and axial depth play the major role in 

producing high stresses. The von Mises stress distribution also shows that the stress is 

lower under the cut surface and that it increases gradually towards the cutting edge. The 

highest compressive stress, xx  appears at the cutting edge. Most of the tensile stress, V  

appears at the edge of the cutting tool. The stress distribution also shows that the stress 

is lower under the cut surface and that it increases gradually near the cutting edge. High 

force is needed at the tool edge for workpiece penetration, and this indirectly increases 

the stress at the tool edge. This distribution of stress is the same for both cases.  

 

Cutting edge 

 

 

The deformation direction 
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