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ABSTRACT 

 

Range extender engine is one of the potential technologies to develop in future. However, 

this technology still has performance and emission problem. To solve this problem, a new 

technology model and optimization method are needed. Therefore, for this purpose, the 

radial basis function and particle swarm optimization are used in the investigation. In this 

study, two types of radial basis function (RBF), Cauchy and Gaussian, were used to 

construct the prediction model of fuel consumption and range extender engine emission. 

Both RBF types were compared with one another to decide on which one is the best to 

predict the model. By using data from a two-cylinder 999 cc gasoline engine, generator, 

battery, electric motor and other vehicle components, a range extender electric vehicle 

(REEV) model simulation was built. Based on this simulation result, some output data 

will be taken as training set data to build the prediction model of fuel consumption and 

emission and some output data will be taken to test this prediction model in MATLAB. 

Moreover, particle swarm optimization (PSO) was used to calculate some control 

parameters of range extender engine to optimize fuel consumption and emission based on 

the best model. The result shows that the radial basis function is successfully used to 

develop the prediction model of some range extender engine control parameters. The 

Cauchy type radial basis function has better accuracy than Gaussian type radial basis 

function. Moreover, based on the model, PSO method is able to calculate control 

parameters efficiently to optimize evaluation item based on the model. 

 

Keywords: range extender engine; radial basis function; particle swarm optimisation. 

 

INTRODUCTION 

 

In the last decade, a big problem in transportation sector is the significant portion of fossil 

fuels consumption and major contributor to air pollutions [1-4]. One of the big sources of 

air pollution is the significant increase of conventional vehicle numbers in recent years 

[5]. Based on these conditions, a new vehicle technology to reduce air pollution and fuel 

consumption is required. Many researchers and vehicle companies have developed some 

new vehicle technologies to decrease fuel consumption and air pollution, such as the 

electric vehicle [6-10] and hybrid electric vehicle [11-13]. However, Range Extended 

Electric Vehicle (REEV) [14-18] is the most suitable vehicle technology for the future as 
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compared to electric vehicle and hybrid electric vehicle [19, 20]. The main components 

of REEV are electric motor, battery and range extender, which is a small generator set 

that consists of a generator and a small engine in series configuration [21-23]. This range 

extender engine works if the state of charge (SOC) of battery decreases until a certain 

condition. Therefore, SOC is the important parameter that influences the range extender 

engine performance. In this step, range extender engine provides electricity for the vehicle 

by recharging the battery or driving the electric motor directly during driving so as to 

continue the vehicle operation. Since this vehicle model still uses the engine as a driver, 

it requires fuel, and of course produces emissions. Due to environmental concern, range 

extender engine exhaust emissions have to meet the increasingly stringent exhaust 

emission limitations. Besides, fuel efficiency standards boost the development of range 

extender engine control technologies. The fundamental point of control system for range 

extender engine is the control energy strategies which significantly affect vehicle 

performance, especially fuel consumption and exhaust gas emission. Thus, researchers 

have done many research to develop the control energy strategy of engine, especially in 

hybrid electric vehicle [24-30]. However, research to develop the control energy strategy, 

especially for range extender engine, is very limited. Considering the importance of 

reducing fuel consumption and exhaust gas emissions, the control of a large number of 

control parameters of the range extender engine is crucial. SOC of battery is the important 

parameter that affects a range extender engine performance because the range extender 

engine operation is initiated if the battery SOC drops below a specified level. Although 

SOC of battery is the control parameter used to turn on the range extender engine, its 

performance cannot be optimally improved.  Therefore, a method to improve its 

performance is required.  

This paper presents the construction of a prediction model for range extender 

engine performance, such as fuel consumption and exhaust gas emission, and an 

optimization method for the prediction model to control the number of control parameters 

appropriately in accordance with fuel consumption and exhaust gas emission as its output 

objectives. The radial basis function (RBF) was applied to construct the range extender 

engine model. It describes the multiple control parameters in relation to the characteristic 

values of range extender engine performance, such as fuel consumption and exhaust 

emission. This was demonstrated in modelling non-linear systems. RBF type Cauchy and 

Gaussian were used to build the prediction model and compared to one another. To 

improve the range extender engine performance, particle swarm optimization (PSO) was 

applied in the model. PSO was applied to calculate the optimal control parameters and 

optimize evaluation item based on the model. 

 

METHODS AND MATERIALS 

 

Model Construction 

Prediction model describes the relationships between several predictor variables 

xi (i=1....n, n >1) and one or more response variables y. 

       
 ),,,( 21 nxxxfy                                                          (1) 

where ɛ is error.  

 

Radial Basis Function  

Radial basis function (RBF) is a multi-variate interpolation function method proposed by 

Powell[31]. RBF consists of a unit with the nonlinear activation function, which makes 
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the distance between input and prototype a variable. It is often used for building the 

approximation of functions in the following form: 

 





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i

ii cxwxy
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)()(                                                                  (2) 

where the approximating function y(x) is represented as a sum of N radial basis functions, 

each associated with a different centre ci, and weighted by an appropriate coefficient wi. 

The weights wi can be estimated by using the matrix methods of linear least squares, 

because the approximating function is linear in the weights. There are two kinds of RBF 

selection method, i.e. forward selection method and backward selection method. The 

forward selection is as follows: starting with an empty subset, to which is added one basis 

function at a time, one which reduces the most sum squared error, until it reaches a chosen 

criterion and finally stops decreasing. Backward selection method is as follows: starting 

with the full subset, from which it is removed by one basis function at a time, the one 

which increases the least sum squared error, until once again the chosen criterion stops 

decreasing. In this study, forward selection method was chosen to identify the model. 

 

Prediction Model of RBF 

In this study, the following form was used to build the model.  


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1
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The model f is expressed as a linear combination of a set of m fixed functions. It is often 

called basis functions by analogy with the concept of a vector being composed of a linear 

combination of basis vectors. The choice of the letter w is for the coefficients of the linear 

combinations and the letter h is for the basis functions which have weights and hidden 

units. m is the number of the hidden unit communication function. The architecture of 

RBF is shown in Figure 1. 

 

Figure 1. The Architecture of radial basis function. 

  

The model performs bias correction and revised the bias later. 
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where, b is the bias value. Hidden units transfer function,  hj is 

 
))(()( xzxh jj                                                                         (5) 

where z is the distance.  

In this study, the RBF uses two types of function, the Cauchy and Gaussian 

functions, as indicated in Table 1. 

 

Table 1. Two types of RBF. 

 

Type String θ 

Gaussian ‘g’ ze  

Cauchy ‘c’ 
)1(

1

z
 

 

The transfer function of the hidden unit is radiating, and each hidden unit is related 

to a vector of the centre and the scale. The distance is 
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where cjk is the centre and rjk is radius. 

 

 
Figure 2. Code of RBF model. 
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When the system is made yi=fi(x), it depends on the least squares method. 
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In other side w is 

                
yHHHw TT 1)(                                                                          (8) 

where H is the design matrix. 

 

The code of the RBF prediction model which was built in Matlab is shown in Figure 2. 

In this study, the correlation coefficient (R) was used to evaluate the prediction accuracy 

of RBF where R ≤ 1 when the prediction is perfect, R =1. The purpose of calculating R is 

to determine the existing relationship between the actual and the prediction values by the 

model. 

 

Particle Swarm Optimization Algorithm 

The algorithm particle swarm optimization (PSO) was introduced by Eberhart and 

Kennedy [32, 33]. PSO algorithm is a technique-based stochastic optimization inspired 

by the social behaviour of a flock of birds or a school of fish. PSO algorithm is used to 

simulate a flock of birds social behaviour with the following analogy; random group of 

birds looking for food in an area. In these areas, there is only a piece of food to search. 

The whole bird does not know the location of foods. But they know these foods are within 

each iteration. So what is the best strategy to find the foods? One of the most effective 

ways is to follow the birds closer to the food. PSO algorithm is one of the optimization 

algorithms that can be used for decision making. But it can also be used to search the 

path. In this study, PSO Algorithm was used to search the position by the return value of 

minimal function. PSO is a technique of optimization by calculating continuously 

candidate solutions by using a reference of quality. These algorithms optimize the 

problems by moving particles (potential solutions) in the space problems by using certain 

functions for the position and velocity of a particle. The movement of particles is 

influenced by the best solution of the particle and the best solution from. A collection of 

these particles is called the swarm, and eventually this swarm will move towards the best 

solution.  

The process of PSO algorithm is as follows: First, initialise a set of random 

particles (each particle represents a possible solution to an optimization problem). 

Second, initialise the position of each particle (Xi) and velocity of every particle (Vi). 

Third, calculate the value fluctuation of each particle Fi based formulas and models that 

were determined in accordance with the optimization problem. Fourth, for each particle, 

compare with the value fluctuation Fi that has achieved the best value Pid (local best), if 

Fi <Pid, then Pid replaced with Fi. Fifth, for each particle, compare the fluctuation value 

Fi with the best value achieved in the population Pgd (global best), if Fi <Pgd, Pgd then 

replaced with Fi. Sixth, based on the similarities of step 4 and 5, the speed (Vi) and the 

position of the particle (Xi) are changed. The formula of velocity change is: 
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where c1 is a learning factor for particle and c2 is learning factor for the swarm and usually 

of equal values of 2. Although in fact, c1 and c2 are between the range (0, 4) and r1 and r2 

are uniformly distributed random numbers in the range 0 and 1. w is the inertia weight. 

In the PSO algorithm, the balance between global and local exploration capabilities is 

primarily controlled by the inertia weight and a decrease in the speed parameter to avoid 

stagnation in the local optimum particle. The formula of position change is: 
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id
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id
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id VXX
                                

(10) 

Finally, if the final conditions are met (the maximum iteration value or the optimum value 

is reached) then the iteration stops and an optimum value is obtained, but if it is not 

reached, then step 3 is repeated. 

 

Powertrain Configuration of Range Extended Electric Vehicle 

The schematic of Range Extended Electric Vehicle (REEV) powertrain configuration is 

shown in Figure 3. In this vehicle model, series configuration is used as the main system. 

The main components of this vehicle are range extender (engine and generator), battery 

and electric motor. In this model, the electric motor functions to transform electrical 

energy from battery to mechanical works. On the other side, the engine, which is coupled 

with generator, has function to generate electrical energy to recharge the battery. REEV 

works in two modes under rule-based control; electric vehicle (EV) mode and range 

extender (RE) mode. EV mode is operated when the distance is short and all propulsion 

power is supplied by the battery. Range extender mode is activated when the distance is 

long. This condition will happen if the SOC of battery drops below a certain level until a 

desired SOC is achieved and it will be off as long as there is sufficient energy from battery 

for pure electric driving.  

TIRE

TIRE

FINAL DRIVE
ELECTRIC 

MOTOR
CONVERTERBATTERY

CHARGER

GENERATORENGINE

RANGE EXTENDER

CHARGING PLUG

MECHANICAL CONNECTION

ELECTRICAL CONNECTION

 
Figure 3. REEV powertrain configuration. 

 

Two cylinder 999 cc gasoline engines were used as a sub-system of REEV. The 

maximum power of engine was 42.6 kW  and  the  maximum torque  was  104.5  Nm.  

The generator model platform was AF 130 synchronous-axial flux with nominal output 

power of 64 kW, maximum speed of 8000 rpm and weight of 30.5 kg [34]. The battery 

model deployed was 30 units lithium-ion LiFeYPO4, with 200 Ah / 3.2 V [35]. The 

electric motor model was HPEVS AC-20 96V, AC induction motor [36]. They were 

simulated under AVL Cruise vehicle simulator. The basic parameters of REEV are shown 

in Table 2.  
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Table 2. Basic parameter of REEV. 
 

Parameter REEV 

Curb Weight 1200 [kg] 

Gross Weight 1580[kg] 

Frontal Area 1.97 [m2] 

Dynamic Rolling Radius 301 [mm] 

Final Drive Transmission Ratio 4.266 

 

Table 3. Control parameters 

 

Table 4. Optimization Objective. 

 

 

 

 

 

 

Table 5. Example data from AVL Cruise simulation. 

 

No 

 

SOC 

Min 

(%) 

SOC 

Max 

(%) 

Engine 

Speed 

(rpm) 

Fuel 

Consumption 

(l/100km) 

NOx 

(g) 

CO 

(g) 

HC 

(g) 

1 35 50 3000 1.4 34.18 554.65 5.81 

2 35 50 3200 1.52 36.28 592.88 6.32 

3 35 50 3500 1.69 39.52 651.34 7.1 

4 35 50 4000 1.97 45.12 749.56 8.37 

5 40 50 3000 1.88 45.88 744.19 7.79 

6 40 50 3200 1.74 41.63 680.1 7.24 

7 40 50 3500 1.6 37.63 620.14 6.75 

8 40 50 4000 1.58 36.15 600.27 6.7 

9 40 50 4500 1.65 37.63 623.98 7.01 

10 45 50 2000 1.35 39.03 586.13 5.09 

11 45 50 2500 1.8 46.76 736.36 7.17 

12 45 50 3000 1.86 45.27 734.12 7.68 

13 45 50 3200 1.74 41.77 682.38 7.26 

14 45 50 3500 1.96 46.04 758.36 8.25 

15 45 50 4000 1.94 44.5 739.06 8.25 

Control 

Parameter 

Meaning Variation 

x1 SOC min [%] 35, 40, 45 

x2 SOC max [%] 45; 50; 55; 60; 65; 70; 75 

x3 Speed [rpm] 3000; 3100; 3200; 3300; 3400; 3500; 3600; 3700; 

3800; 3900; 4000; 4100; 4200; 4300; 4400; 4500 

Optimization Objective  Range extender engine 

y1 Fuel consumption [l/100km] 

y2 NOx [g] 

y3 CO [g] 

y4 HC [g] 
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To optimize the fuel consumption and exhaust gas emission of REEV, AVL 

Cruise has built the REEV model. In this study, the control parameters are set in Table 3 

and the optimization objectives are listed in Table 4. Based on this simulation result, some 

output data will be taken as training set data to build the prediction model and some output 

data will be taken to test the prediction model in MATLAB. In this study, the number of 

set data used to create the model was 250 data and number of set data used to test the 

model was 44 data. A simulation was realised by using MATLAB, and performed on a 

PC with an Intel(R) Pentium(R) Dual CPU T2390 @ 1.86 GHz, and 0.99 GB RAM. The 

example data that produced from AVL Cruise software simulation is shown in Table 5. 

 

RESULTS AND DISCUSSION 

 

Prediction and Actual Result of the Prediction Model 

Radial functions are a special class of functions. Their characteristic feature is that their 

response decreases or increases monotonically with distance from a central point. The 

centre, the distance scale, and the precise shape of the radial function are parameters of 

the model, all fixed if it is linear.  

 
(a)                                                         (b) 

 

Figure 4. Prediction and actual result of the fuel consumption rate (a) by RBF Cauchy; 

(b) by RBF Gaussian. 

 

Based on the radial basis function method, the prediction and actual value of the 

prediction model is as follows. The prediction and actual values of fuel consumption by 

radial basis function are shown in Figure 4. The solid line is prediction value and dotted 

line is actual value. Figure 4(a) shows the comparison of fuel consumption in prediction 

and actual values by RBF Cauchy. The correlation coefficient R of this model was 0.9036. 

If compared with Figure 4(b), fuel consumption by RBF Gaussian, the correlation 

coefficient R was only 0.6686. The model of fuel consumption built by RBF Cauchy was 

more accurate than RBF Gaussian. In the same case, the models of NOx, CO and HC 

emissions built by RBF Cauchy and RBF Gaussian were obtained. The models are shown 

in Figure 5(a-f).  Figure 5(a-b) shows that the predictive model of NOx emission by RBF 

Cauchy had higher accuracy than the predictive model of NOx emission by RBF 

Gaussian. This is proven by the correlation coefficient 0.8627 for NOx emission with 

RBF Cauchy and 0.6293 for NOx emission with RBF Gaussian. It can be regarded that 

the RBF Cauchy can effectively estimate the objectives better than RBF Gaussian for 

NOx emission. Based on the prediction model of NOx emission by RBF Cauchy and RBF 
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Gaussian in Figure 5(a-b), it can also be explained that the RBF Gaussian monotonically 

increase with the distance from the centre but was too small. Thus, if compared with the 

actual value, the prediction value had high discrepancy around 25%. 

 

 
(a)                                                            (b) 

 
(c)                                                                  (d) 

 
(e)                                                                (f) 

Figure 5. Prediction and actual result of (a) the NOx emission by RBF Cauchy; (b) the 

NOx emission by RBF Gaussian; (c) the CO emission by RBF Cauchy; (d) the CO 

emission by RBF Gaussian; (e) the HC emission by RBF Cauchy; (f) the HC emission 

by RBF Gaussian. 

 

In contrast, RBF Cauchy which, in the case of scalar input, is monotonically 

increased with the distance from the centre and the discrepancy is only 8.33 %.  The same 

thing happened to the CO and HC emission. It is shown in Figure 5(c-f). Moreover, RBF 

Cauchy is capable to monotonically increase with the distance from the centre with only 

9.09% discrepancy for CO emission and 4.54% for HC emission, it has high correlation 

coefficient (R) of 0.9312 for CO emission and 0.9260 for HC emission. In contrast, the 

RBF Gaussian had high discrepancy, i.e., 20 % for CO emission and 18.18 % for HC 
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emission and low correlation coefficient (R) of 0.7123 for CO emission and 0.6845 for 

HC emission. Based on this explanation, it can be regarded that the RBF Cauchy can 

effectively estimate the objectives better than RBF Gaussian for CO and HC emission 

too. In order to improve the fuel consumption and emissions of range extender engine, in 

the next step, PSO was used to find the optimal range extender engine control parameters 

based on the RBF Cauchy model efficiently. 

 

Optimization of Range Extender Engine Control Parameter 

The simulation by using PSO method was carried out based on some conditions, i.e., 

number of particle was 30 and maximum number of iteration was 150. The important 

factor to get the optimal value of range extender engine control parameter in PSO method 

is the fitness function. In this study, one optimization objective was adjusted to a fitness 

function as:   

4
15.0

3
25.0

2
4.0

1
2.0 YYYY

j
Min                                      (11) 

 

where Y is the normalised values of the y (Equation (1)). y1, y2, y3 and y4 are the 

optimization objectives of range extender engine.  

 
 

Figure 8. Convergence of PSO (J = 111.5487). 

 

Based on the simulation result with PSO method, the optimal value of range 

extender engine control parameters was found. The optimal values of range extender 

engine control parameters are listed in Table 6. The computing time took 22.036061 

seconds. Convergence of the global best fitness value is shown in Figure 8. The global 

best fitness value convergences at J = 111.5487. Based on the optimal range value of 

extender engine control parameter, the optimization objectives of range extender engine 

can be predicted. Based on this result, it can be explained that the optimal value to get the 

optimal value of fuel consumption and emission of NOx, CO and HC are SOC min 35 %, 

SOC max 48 % and engine speed 3058 rpm. If the control parameter had used other 

variations, then the value of fuel consumption and emission NOx, CO and HC are  not 

optimal. It means, sometimes the value of fuel consumption is low but the emission value 
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is too high. Otherwise, the value of emission is low but the value of fuel consumption is 

high. Table 7 shows comparison of the prediction and actual optimal values of range 

extender engine of optimization objectives based on prediction model from Table 6.  

 

Table 6. The optimal value of range extender engine control parameters. 

 

 

 

 

 

 

 

Table 7. Comparison of actual and prediction range extender engine optimization 

objectives. 

 

The range extender engine optimal control parameters in Table 6 were validated 

in the AVL Cruise and the results of validation based on the simulated optimal control 

parameters were compared with the calculated range extender engine optimal objective 

values. The actual result as the validation result and the prediction result as the calculation 

result are shown in Table 7. Based on Table 7, the actual and prediction result have the value 

of discrepancy in all range extender engine optimization is very small. The discrepancy of the 

fuel consumption is 2.17%, NOx is 2.84 %, CO is 2.37 % and HC was 2.26 %. It can be observed 

that the prediction values of fuel consumption, NOx, HC of range extender engine is in 

agreement with the actual values from AVL Cruise. Based on this result, the PSO method 

is  to be the effective method in this optimization problem. 

 

CONCLUSIONS 

 

Based on the results and discussion, it can be reported that the predicting model of fuel 

consumption (NOx, CO) and HC emissions of range extender engine by using RBF were 

done. This study shows that the predictive accuracy by RBF Cauchy method was higher 

than RBF Gaussian. This is proven by the value correlation coefficient of RBF Cauchy 

that is higher than RBF Gaussian of around 0.9000 or more. In order to improve fuel 

efficiency and exhaust emissions of range extender engine, PSO was used to find the 

optimal value of range extender engine. Based on the optimal value of range extender 

engine control parameter, the optimization objectives of range extender engine can be 

estimated and as compared to the actual values of optimization objective of range 

extender engine. The result proved that the PSO was an effective method for engine 

optimization problem. In order to improve the performance of REEV especially in fuel 

consumption and emission, in future work, these control parameters and optimization 

objective should be more and must be validated on the road, and the results of validation 

based on the optimal control parameters simulation should be compared with the 

calculated optimal objective values. Then, the prediction model which added PSO should 

be mounted as a controller, and the control performance should be evaluated. 

 

 

Control 

Parameter 

Meaning Variation 

x1 SOC min (%) 35 

x2 SOC max (%) 48 

x3 Speed (rpm) 3058 

Comparison Fuel consumption [l/100km] NOx [g] CO [g] HC [g] 

Actual 1.38 33.49 544.98 5.75 

Prediction 1.35 32.54 532.05 5.62 
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