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ABSTRACT 

 

Plug-in Hybrid Electric Recreactional Boat (PHERB) is a new innovation of conventional 

boat for water transportation. In the PHERB powertrain, the main power source to drive 

the boat is the electric machine (EM). The primary energy source of EM is the battery. 

Battery is an important power energy supplier to PHERB and has two main conditions 

such as charging and discharging conditions. In this paper, the optimal design of the 

battery in a discharging condition is reported. The battery model is developed in 

MATLAB/Simulink environment together with a closed-loop feedback PI controller. By 

using a power demand curve as a reference for the model, the optimal performance of the 

discharging battery is obtained by using the genetic algorithm optimization. The results 

of optimal control parameters of the system are compared with the trial-and-error method. 

It has been found that the proposed optimal system design can improve the discharged 

battery‘s performance significantly. 
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INTRODUCTION 

 

Energy, pollution issues, and increasing fuel price have become major problems 

nowadays  ][1, 2]. Thus, the revolution of electric vehicles was introduced. Plug-in hybrid 

electric vehicles (PHEVs) provide higher fuel efficiency and lower emissions through the 

combination of the conventional internal combustion engine (ICE) with electric machines 

(EM) and energy system storage (ESS) [3]. Therefore, the new innovation from 

conventional boat, namely the Plug-in Hybrid Electric Recreactional Boat (PHERB), was 

introduced [4].  

 In the PHERB powertrain, the main power source to drive the boat is the electric 

machine (EM). The battery pack to supply continuous power to the boat is the primary 

energy source of EM, and the secondary energy source is the ultracapacitor pack, which 

is used to absorb the power pulses during regenerative braking and to deliver power for 

peak acceleration. ICE is set as a backup power source where it is operated under certain 

conditions and will not be switched on all the time in order to minimize fuel consumption 

and harmful emissions. The size of ICE can be reduced since its power is needed only 

when the battery’s state of charge (SOC) level is low and to provide required extra torque 

to assist EM in order to operate the boat during high torque drive conditions [5-9]. A 

schematic illustration of the proposed series-parallel PHERB powertrain is shown in 

Figure 1. 
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Figure 1. A schematic illustration of the PHERB powertrain [10]. 

 

 PHEVs are designed using a lithium-ion battery powered for the energy storage 

system that offers high densities of capacity and power, low memory effect, long life 

span, high terminal voltage, and low discharge rate as compared with other batteries [11-

13]. However, lithium-ion batteries are costly and need an optimal charging and 

discharging system [14], and also require protection from overcharging and 

overdischarging. This paper presents an optimization method using the heuristic 

optimization approach of Genetic Algorithm (GA) optimization in order to improve the 

battery performance of PHERB when running in the battery discharging condition. The 

battery model developed was based on the saft rechargable litium ion battery, while the 

control of the battery has been constructed based on the conventional PI control method. 

With the help of the optimization algorithm of GA, the optimal tuning of the control 

parameters has been carried out in MATLAB/Simulink environment. The results of the 

model development and verification as well as the performance of the proposed system 

have been compared with the conventional trial-and-error method. 

 

METHODS AND MATERIALS 

 

The research methodology is based on three phases, which are mathemathic modelling in 

MATLAB/Simulink, PI controller model, and optimization. Li-ion battery was chosen 

since it offers more advantages as compared to other battery types. It has no memory 

effect, low self-discharge, high recharging energy efficiency, and has good high-

temperature performance [15]. The Li-ion battery can efficiently fill the limited space of 

the device that they power due to the fact that it can be formed into a wide variety of sizes 

and shapes. The parameter and specification of the Li-ion battery are presented in Table 1. 

 

Table 1. Parameter and specification of the Li-ion battery model. 

 

Battery MP 176065 Saft Lithium-ion 

Nominal voltage 3.75 V 

Typical capacity 6.8 Ah 

Nominal energy 26 Wh 

Maximum continous discharge current 14 A (~2C rate) 

Pulse discharge current up to 30 A (~4C rate) 

Typical weight 143 g 

Volume 68 cm3 
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Mathematic Modelling of the Battery 

Once the parameters and specifications of the battery is determined, the model of the 

system component is developed in MATLAB/Simulink. The Li-ion battery model was 

built based on the mathematical formula. The battery model was derived based on the 

equation of the battery itself. Current was applied to the battery when there was a pulse 

discharge. Ohmic resistance causes immediate vertical voltage drop, while polarization 

resistance causes exponential voltage drop [16]. The related equations of discharging are 

as shown below: 

 

𝐸𝑑𝑖𝑠  =  𝐸0 − 𝐾
𝑄

𝑄− 𝑄
𝑡𝑖∗ − 𝐾

𝑄

𝑄− 𝑄𝑡
+ 𝐴𝑒−𝐵𝑄𝑡       (1) 

 

where, E is the no load voltage, 𝐸0 is the battery constant voltage, K is the polarization 

constant, Q is the maximum battery capacity, Qt is the extracted capacity, i* is the low 

frequency current dynamics, 𝐴 is the exponential voltage, B is the exponential current, i 

is the battery current, and R is the internal resistance. 

The exponential part of Equation (1) is as calculated as in Equations (2) and  (3). 

The “typical discharge characteristic” curve, which is included in the battery datasheet, 

provides the necessary points used to extract the model parameters. The points include 

the fully charged voltage, the end of the exponential zone and the end of the nominal 

zone. In the case of internal resistance not provided in the datasheet, an initial estimate 

from other Li-ion batteries of similar ratings is made. The internal resistance is assumed 

to be 0.05 Ω. 

 

𝐴= 𝑉𝑓𝑢𝑙𝑙− 𝑉𝑒𝑥𝑝         (2) 

 

𝐵= 
3 

𝑄𝑒𝑥𝑝
       (3) 

 

where, 𝑉𝑓𝑢𝑙𝑙 is the fully charged voltage, 𝑉𝑒𝑥𝑝 is the exponential point voltage, and 𝑄𝑒𝑥𝑝 is 

the exponential point capacity. The polarization voltage, K, can be obtained from the fully 

charged voltage and the third point of the “typical discharge characteristic” curve. The 

equation of K is shown in Equation 4. On the other hand, the battery voltage constant, E0, 

is shown in Equation 5, where it can be deduced from the fully charged voltage. The 

variable i is the battery current in Ampere and R is the internal resistance in ohm. 

 

𝐾= 
(𝑉𝑓𝑢𝑙𝑙− 𝑉𝑛𝑜𝑚+ 𝐴(𝑒(−𝐵𝑄𝑛𝑜𝑚)−1)) ×(𝑄− 𝑄𝑛𝑜𝑚)

𝑄𝑛𝑜𝑚
     (4) 

𝐸𝑜= 𝑉𝑓𝑢𝑙𝑙 + 𝐾 + 𝑖𝑅 –𝐴     (5) 

 

where, 𝑉𝑛𝑜𝑚 is the nominal voltage and 𝑄𝑛𝑜𝑚 is the nominal capacity. The discharging 

power can be determined by the battery terminal voltage and the discharging loss. 

Equations 6 and 7 show the battery terminal voltage and the discharging loss, 

respectively. The converter efficiency was up to 98.5% and was used to calculate the 

converter loss [9]. However, Equation 8 shows the discharging power of the battery. 

 

    𝑉𝑏𝑎𝑡𝑡 = 𝐸 − 𝑖𝑅        (6) 

   𝑃𝑙𝑜𝑠𝑠,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 =  Vbatt  × 𝑖 × 1.5%     (7) 

𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 =  𝑉𝑏𝑎𝑡𝑡  ×  𝑖 −  𝑃𝑙𝑜𝑠𝑠,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒      (8) 
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where, 𝑉𝑏𝑎𝑡𝑡 is the battery terminal voltage, 𝑃𝑙𝑜𝑠𝑠,𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 is the discharging loss, and 

𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 is the discharging power. From the mathematical equations presented in 

Equation 1 to Equation 8, the model has been implemented in MATLAB/Simulink.  

 

PI Controller Model  

The PI controller is universally well-known for closed-loop control, which is flexible in 

terms of operation and ease of tuning. This controller is applied to stabilize the output of 

the process system with minimal errors for any change of the process system behaviour 

[17]. Equation (9) in the discrete form and Equation (10) in the z-transform define the 

model characteristics of the PI controller for digital implementation [18]. 

 

                           U𝑘 =  𝐾𝑃 × 𝑒𝑘 + 𝐾𝑖  ∑ 𝑒𝑖
𝑘
𝑖=1 =  𝐾𝑝 × 𝑒𝑘 + 𝐾𝐼 (𝑈𝑘 − 1 +  

𝑒𝑘+𝑒𝑘−1

2
𝑇𝑆)   (9) 

                             U𝑧 =  𝐾𝑃 × 𝑒𝑧 + 𝐾𝑖  
(𝑧+1)𝑇𝑆

2(𝑧−1)
𝐸𝑧 = (

(𝐾𝑝+𝐾𝑖
𝑇𝑠

2
)𝑧− 𝐾𝑝+𝐾𝑖

𝑇𝑠

2

𝑧−1
) 𝐸𝑧            (10) 

 

where u is the control input to process plant; Kp and Ki are the proportional and integral 

gains, respectively; e is the tracking error, which is the difference between the desired and 

actual values; Ts is the sample rate; and U and E are the parameters in the z-transform 

corresponding to u and e, respectively. Figure 2 shows the block diagram of the system 

with PI controller. 

 

 
 

Figure 2. Block diagram of system with PI controller. 

 

Genetic Algorithm Optimization 

For the optimization stage, the Genetic Algorithm (GA) method was chosen. The 

implementation of PI controller in the closed-loop system is as shown in Figure 3. GA 

was used to minimize the error signals of the closed-loop control system. In process 

control applications, PI controller the most commonly used due to the ease of operation 

and satisfied performances. By adjusting the proportion gain (Kp) and integral gain (Ki), 

the dynamic properties of the controller can be modified. Kp has the effect to reduce the 

rise time, but never eliminate the steady state error [19]. However, there was an 

improvement on the steady state error by controlling Ki. The initial population of the PI 

parameters was chosen based on the trial-and-error method. The simulation for controller 

response to unit step is as shown in Figure 4. It was used as a recommendation for 

choosing the lower bound and upper bound of Kp and Ki. 
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Figure 3. Closed-loop system for GA optimization. 

 

 
 

Figure 4. Controller response to unit step. 

 

  From the controller response to unit step, obviously, Kp and Ki equal to 10 were 

not chosen because of their higher overshoot, rise time, and settling time [19]. Therefore, 

the ranges were not taken into account for optimization with GA. When both Kp and Ki 

equal to 100 and 200, they have lower overshoot, rise time, and settling time as compared 

to Kp and Ki equal to 10. Hence, the range above 100 was chosen for better performance 

on the optimization. When tuning the PI controller using GA, in the Simulink model, the 

parameters of GA were initialized. 80 chromosomes in one population were chosen 

because the bigger the chromosome number, the better the chance to obtain the optimal 

result. The selection method determines how individuals are selected for mating. In this 

research, the Roulette Wheel Selection method was chosen because it allows the weaker 

chromosomes to be selected many times. However, crossover was operated by swapping 

certain parts of the two selected strings in a bid to obtain the good parts of old 

chromosomes. Hence, this creates better new chromosomes. The selected crossover 

probability was 0.95. For mutation, it is the occasional random alteration of a value of a 

string position. The high mutation rate would destroy fit strings and degenerate GA into 

a random search, therefore, it was set to a low rate at 0.085 [10]. The selected maximum 

number of generations was 100 in order to terminate the continuous evolution procedure. 

For fitness function, Integral of Time Multiply by Absolute Error (ITAE) was chosen. 

Figure 5 shows the flow chart of the GA process, which is used in an attempt to overcome 

the other conventional approaches in nonlinear cases [20]. 
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Figure 5. General flowchart for GA. 

 

RESULTS AND DISCUSSION 

 

The block parameters in MATLAB/Simulink were set up before running the simulation. 

The parameters of each block used were set based on the specification and datasheet. The 

simulation of the characteristics of the Li-ion battery was done and the results were 

discussed. 

 

Model in MATLAB/Simulink 

The discharge model was constructed in MATLAB/Simulink with the corresponding 

input and output variables representing the battery model as shown in Figure 6. 

 

Figure 6. Discharge battery model. 
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 The typical discharge profile of the Li-ion battery under different C-rates is shown 

in Figure 7. The result of open circuit voltage versus capacity was conducted for 1C, 2C, 

and 5C discharges to identify the rate capacity effect of battery. The traits were the same 

as the nominal current discharge characteristics and can be validated and the patterns are 

similar [21] as in Figure 8. The curve showed the two zones of the discharge 

characteristic, namely exponential zone and nominal zone. The C-rate is a measure of the 

rate at which the current is used to discharge the battery. An 1C rate means that the 

discharge current will discharge the entire battery in one hour. The higher the C-rate, the 

shorter the discharge period. 

 

 
 

Figure 7. Open circuit voltage versus capacity in discharge condition.  

 

Figure 8. Battery voltage versus time [21]. 

 

 Figure 9 shows the result of SOC versus time. It has the same characteristics as 

the curve based on [22]‘s studies. SOC decreased with time when the system was running. 

The percentage of the present battery capacity can be expressed as in Equation 9 [23]. 

 

𝑆𝑂𝐶 =
 𝑄− 𝑄𝑡 

𝑄
        (9) 
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 . 

Figure 9. Battery state of charge versus time. 

 

  Figure 10 shows that 1C discharge gave the maximum discharge power 

approximate to 1300 W and has the longer discharging time (about 4250 s). However, 5C 

discharge gave the largest discharge power (approximate to 4800 W) and has the shortest 

discharging period (about 3150 s). The higher the depth of discharge, the shorter the 

discharge period [22]. 

                                                                                                                                           

 
 

Figure 10. Discharging power versus time. 

 

Optimization using Genetic Alogrithm 
A power load was designed as a reference discharge power for this research [23]. The 

reference power compromised acceleration, deceleration, and constant speed at 120 

seconds. The performance of the developed system is first obtained through tuning by 

trial-and-error with the PI controller. The Kp and Ki values were set to 3. Figure 11 shows 

the result of power response of the system that was tuned by the PI controller. The system 

was then optimized by adjusting the PI parameters via GA with the Simulink model with 

the lower bound of 100 and upper bound of 250. Figure 12 shows the result of power 

response of the system that was tuned with GA. Meanwhile, Figure 13 shows the 

minimum error in each iteration. Table 2 shows the objective function at different 

iteration counts.The result as shown in Figure 11 was the power response-designed PI 
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with a population size of 80. The following response factors were not satisfied from the 

analysis, where the rise time was 2.9 seconds and the settling time was 5.17 seconds. 

However, for the GA-designed PI with a population size of 80 as shown in Figure 12, it 

had some improvement from the analysis of response factors. The rise time was 1.4 

seconds and the settling time was 2.5 seconds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Power response of the system tuned without GA. 

 

Figure 12. Power response of the system tuned with GA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Minimum error in each of the iteration. 
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Figure 14. Result of error against iterations. 

  

 After the optimization with GA, it showed an improvement on both rise time and 

settling time. It has an improvement of 51.72% for rise time and 51.64% for settling time 

[23]. In Figure 13 and Table 2, the error continues to be reduced from the first iteration 

until the last iteration. It showed a steady state error of 1324.23739955 after 80 iterations, 

which remain constant further. When the power response for the GA-designed PI with a 

population size of 80 and lower bound of 200 and upper bound 250, the result of power 

response was almost the same as in Figure 13; but when it was magnified, the errors were 

still available on it. Figure 14 shows the result of error against iterations and Table 3 

shows its objective function at different iteration counts. 

 

Table 2. Objective function at different iteration counts. 

 

Iteration count Minimum total error 

20 1326.65665162 

40 1326.65665162 

60 1326.29968620 

80 1324.23739955 

100 1324.23739955 

 

Table 3. Objective function at different iteration counts. 

 

Iteration count Minimum Total Error 

20 1336.71354082 

40 1335.41568238 

60 1334.16319724 

80 1331.16988452 

100 1331.16988452 

 

  The rise time from the analysis was 1.93 seconds and the settling time was 3.43 

seconds. The improvement of it compared to tuning using PI controller was 33.45% for 

rise time and 33.66% for settling time. However, the setback was that it was inferior when 

compared to the optimization with lower bound of 100 and upper bound of 250. 

Therefore, the optimization with a population of 80 and lower bound of 100 and upper 
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bound of 250 was the optimum choice. From Figure 16 and Table 3, the error continues 

to be reduced from the first iteration until the last iteration. It showed a steady state error 

of 1331.16988452 after 75 iterations, which remain constant further [24]. 

 

CONCLUSIONS 

 

The paper has shown the development of saft rechargeable lithium ion battery-based 

PHERB during battery discharge. The model was built based on the parameters, 

specification, and requirements for the PHERB condition. The validity of the developed 

model has been verified and the optimal performance of the model has been studied by 

using the GA-based tuning algorithm of the conventional PI controller. The results show 

the accuracy of the model developed and it is proven that the GA-based optimization can 

significantly improve the control system performance of the battery during the discharge 

condition. 
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