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ABSTRACT - The Inverted Pendulum is a classic control problem, it has non-linear dynamics, 
is underactuated and is naturally unstable. Thus, developing a system capable of controlling 
it goes through challenges such as modeling, design requirements, and implementation of the 
control hardware. This work proposes the swing-up of the linear inverted pendulum using the 
energy method with adjustable parameters, followed by a linear quadratic regulator 
controller stabilization. This work demonstrates how the system can be implemented using an 
Arduino microcontroller to acquire state variables and control commands. Furthermore, as a 
highlight, the implemented algorithm indicates a way to stabilize the sampling frequency, 
making the derivative process stable in the applied hardware and optimizing the control. The 
applied method was efficient in performing the swing-up, consistent with the simulations, and 
as effective as seen in the literature.  
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1. INTRODUCTION 

Control theory involves the implementation of autonomous dynamic systems. Historically, this process began with 

purely mechanical regulatory mechanisms, such as the early-level float devices dating back to the 3rd century before 

century. With the advent of the Industrial Revolution, a centrifugal governor for controlling the speed of a steam engine 

was developed [1-4]. The emergence of computers was a watershed moment in implementing controllers because they 

could simplify the monitoring and manipulation of variables in controlled systems, enabling previously impractical 

applications. One of these applications is the Linear Inverted Pendulum (LIP) system, which has become a benchmark in 

control theory due to its nonlinearity, under-actuation, and instability [5]. 

Among the existing approaches, one that adds complexity to the LIP problem is implementing the "swing-up" 

technique. It relies on implementing a nonlinear control law that makes the system converge from its naturally stable 

position (downward) to a naturally unstable position (upward). Addressing this topic, Wang et al. [6], Muskinja and 

Tovornik [7], and Tao et al. [8] employed Fuzzy Logic with Takagi–Sugeno models composed of consecutive "if-then" 

logical rules. While they achieved good results, the implementation process can be considered exhaustive and error-prone. 

Another approach to swing-up control involves the application of machine learning algorithms, typically using 

reinforcement learning, as done by Si and Wang [9], Morimoto and Doya [10], and Riedmiller [11]. Based on trial and 

error, this type of process can be harmful in a real system, damaging or posing risks to the people involved. However, 

Riedmiller [11] conducted experimental work on a Simple Inverted Pendulum, which has an actuator that acts directly on 

the pendulum. Finally, a third approach available in the literature involves energy-based methods. In this approach, it is 

considered that the acceleration of its actuator can control the pendulum's energy, and the control law aims to guide the 

system to a state where its energy is equivalent to the pendulum being up and at rest. In Yoshida [12], Bugeja [13], and 

Yang et al. [5], it is noticeable that the control laws proposed for swing-up are relatively more straightforward to 

implement when compared to Fuzzy Logic and machine learning, especially in the latter work where the control law is 

expressed by just one equation. Additionally, there is concern regarding the actuator's position in all three cases, which is 

of great importance in a real system due to its limitations, such as rail length. 

This work performs the numerical and experimental implementation of the swing-up method developed by Yang et 

al. [5] using Python for real-time calculation of control commands and the Arduino Due microcontroller for state variable 

acquisition and control signal transmission. Similar work is seen in Bellati et al. [14], and Graham and Turkoglu [15], 

both use the energy-based approach for swing-up. The first stabilizes a Futura’s Pendulum in the upward position with a 

Local Linear Regulator. In contrast, the second does it with an LIP and uses a Proportional Integral Derivative (PID) 

controller. The Arduino platform is used in both cases. However, they are dependent on the proprietary and high-cost 

Simulink platform. This paper presents an alternative implementation form using Python, an open-source software. 

Furthermore, after the pendulum reaches the upright position, a Linear Quadratic Regulator (LQR) controller is used for 

system stabilization. This robust control technique has been replicated in previous works such as Prasad et al. [16], Lee 

et al. [17], and Irfan et al. [18]. The control of the LIP is divided into consecutive stages: swing-up and stabilization. To 
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achieve this, mathematical modeling of the LIP system and the controllers for swing-up and LQR are performed, allowing 

for the numerical validation of the method. Subsequently, experimental reproduction of the method is carried out, and a 

comparison is made with the numerical data. 

The division of this work is as follows: the section “Materials and Methods” is subdivided into “Mathematical Model 

of the Linear Inverted Pendulum,” which presents the mathematical development of the linear inverted pendulum; 

“Swing-Up and Stabilization Strategy,” which elaborates on the swing-up and stabilization strategy for the pendulum; 

“Experimental Implementation,” which describes the steps used to implement the system in practice; the section “Results 

and Discussion” displays and discusses the parameters used and the results obtained from the implementation of the 

method; finally, in the section “Conclusions,” the concluding remarks of the work are provided. 

2. MATERIALS AND METHODS 

2.1 Mathematical Model of the Linear Inverted Pendulum 

As it is a system with two degrees of freedom, the mathematical model of the LIP presents two coupled differential 

equations. Based on the system diagram shown in Figure 1, the application of Newton’s Second Law of Motion results 

in the following characteristic equations: 

(𝐽 +  𝑚 𝑙2) �̈� = 𝑚𝑙𝑔 sin 𝛼 + 𝑚𝑙�̈� cos 𝛼 (1) 

  

(𝑀 + 𝑚)�̈� = 𝑚𝑙�̈� cos 𝛼 − 𝑚𝑙 �̇�2 sin 𝛼 − 𝐵�̇� + 𝐹 (2) 

where 𝐽 represents the moment of inertia of the pendulum about its center of mass, 𝑚 is its mass, 𝑙 is its length from the 

pivot point to the center of mass, 𝑀 is the mass of the cart, 𝐵 is the friction between the cart and the rail, and 𝑔 is the 

acceleration due to gravity. The angular displacement of the pendulum is represented by 𝛼, with positive values in the 

counterclockwise direction of rotation, and the linear displacement of the cart is represented by 𝑥, with positive values to 

the right. 

 

Figure 1. Schematic of the Linear Inverted Pendulum with conventions for positive directions of state variables 

2.2 Swing-Up and Stabilization Strategy 

Initially, the cart's acceleration is zero, �̈� = 0, so Eq. (1) simplifies to Eq. (3). 

(𝐽 + 𝑚𝑙2)�̈� = 𝑚𝑙𝑔 sin 𝛼 (3) 

As done by Yang et al. [5], it will be defined that when the pendulum is upright and at rest, its energy is zero. Therefore, 

the expression representing the pendulum's energy 𝐸𝑝 is given by Eq. (4). 

𝐸𝑝 =
1

2
(𝐽 + 𝑚𝑙2)α2̇ + 𝑚𝑙𝑔(cos α − 1) (4) 

With these definitions and varying initial conditions, it is possible to visualize the orbits of constant energy of the 

pendulum. This is depicted in Figure 2, where the orbits are represented by purple and red lines, as well as a blue line, 
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respectively represent internal orbits (where 𝐸𝑝 is between 0 and  −2 𝑚𝑙𝑔), transition orbits (where,  𝐸𝑝 = 0), and external 

orbits (where, 𝐸𝑝 is greater than zero). The circular black points (α, α̇) = (±π, 0) represent the initial conditions, i.e., the 

pendulum down at rest, while the diamond-shaped points (α, α̇) = (±2π, 0) and the origin represent the pendulum up at 

rest. 

 

Figure 2. Orbits of constant energy for the pendulum in relation to the variation of angular position [𝛼] and angular 

velocity [�̇�] 

The swing-up strategy defines a control law that can drive the velocity of the cart and the energy of the pendulum 

towards zero over time. The goal is achieved without the cart exceeding the limits of the track. Yang et al. [5] proposes a 

candidate Lyapunov function represented by: 

𝑉 =
1

2
(𝐸𝑝

2 + 𝑚𝑙𝜆𝑥2̇) (5) 

The parameter 𝜆 >  0 is a design value and can be adjusted to meet control requirements. Next, the derivative of 𝑉 with 

respect to time is computed: 

𝑑𝑉

𝑑𝑡
= 𝐸𝑝𝐸�̇� + 𝑚𝑙λ�̇��̈�  = 𝐸𝑝[(𝐽 + 𝑚𝑙2)α̇α̈ − 𝑚𝑙𝑔 sin α α̇] + 𝑚𝑙𝜆�̇��̈� 

and, 

  
𝑑𝑉

𝑑𝑡
= 𝐸𝑝𝑚𝑙 cos α α̇�̈� + 𝑚𝑙λ�̇��̈�  = �̈�𝑚𝑙(𝐸𝑝 cos α α̇ + λ�̇�) 

(6) 

In the development of Eq. (6), the term (𝐽 + 𝑚𝑙2)α̈ was replaced by the value from Eq. (1). Next, a control law is 

proposed: 

𝑢𝑎𝑠 = −𝑢𝑎(𝐸𝑝 cos α α̇ + λ�̇�) (7) 

Since the control is exerted through a force applied to the cart, it enables the control of its acceleration, so 𝑢𝑎𝑠 = �̈�. Thus, 

𝑑𝑉/𝑑𝑡 is rewritten as: 
𝑑𝑉

𝑑𝑡
= −𝑚𝑙𝑢𝑎(𝐸𝑝 cos α α̇ + λ�̇�)

2
 (8) 

The term 𝑢𝑎 > 0 is a second design parameter that generates a proportional gain, while  λ  regulates the gain relative 

to the cart's velocity. If the Lyapunov function, 𝑉 defined earlier tends to zero, then the terms 𝐸𝑝 and �̇� will also necessarily 

tend to zero. This was the premise used to determine the expression for 𝑢𝑎𝑠 in Eq. (7). However, from the expression 

obtained in Eq. (8), 𝑑𝑉/𝑑𝑡 can assume the value of zero, which would lead the system to not converge to the transition 

orbit. However, Yang et al. [5] proves that for any initial condition different from (α, �̇�, α̇) = (±π, 0,0), the system will 

reach the transition orbit. For conditions where the pendulum has any energy value greater than −2𝑚𝑙𝑔, even if 𝑑𝑉/𝑑𝑡 

is zero at that moment, there will be future motion, making 𝑑𝑉/𝑑𝑡 negative again, which leads the system to converge to 

the transition orbit. Therefore, an initial impulse is necessary for the system to initiate the swing-up process. Once the 

transition orbit is reached, there is a switch from the nonlinear controller to an LQR controller that ensures local stability. 

For its implementation, the system must be linearized and represented in state-space (SS) form [15]. Initially, the state 

variable is defined as: 

x = [𝑥 𝛼 �̇� �̇�]𝑇 (9) 

Its derivative is represented as: 

ẋ = [�̇� �̇� �̈� �̈�]𝑇 (10) 

It is necessary to determine the functions representing �̈� and α̈. To do this, manipulating Eqs. (1) and (2), making the 

appropriate substitutions, yields: 
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    α̈ =
−(𝑚𝑙)2(sin α cos α)α2̇ − (𝑚𝑙 cos α)𝐵�̇� + (𝑀 + 𝑚)𝑚𝑙𝑔 sin α + (𝑚𝑙 cos α)𝐹

(𝑀 + 𝑚)(𝐽 + 𝑚𝑙2) − (𝑚𝑙 cos α)2
 (11) 

  

      �̈� =
−(𝐽 + 𝑚𝑙2)(𝑚𝑙 sin α)α2̇ − (𝐽 + 𝑚𝑙2)𝐵�̇� + (𝑚𝑙)2𝑔 sin α cos α + (𝐽 + 𝑚𝑙2)𝐹

(𝑀 + 𝑚)(𝐽 + 𝑚𝑙2) − (𝑚𝑙 cos α)2
 (12) 

The state-space representation requires linear equations. Eqs. (11) and (12) can be linearized using Taylor series up to 

the first order around the system's origin 𝑥0 = (𝑥, α, �̇�, α̇) = (0,0,0,0). Therefore, these equations can be expressed in 

their linear form as follows: 

α̈ =
−𝑚𝑙𝐵�̇� + (𝑀 + 𝑚)𝑚𝑙𝑔α + 𝑚𝑙𝐹

(𝑀 + 𝑚)(𝐽 + 𝑚𝑙2) − (𝑚𝑙)2
 (13) 

  

 �̈� =
−(𝐽 + 𝑚𝑙2)𝐵�̇� + (𝑚𝑙)2𝑔α + (𝐽 + 𝑚𝑙2)𝐹

(𝑀 + 𝑚)(𝐽 + 𝑚𝑙2) − (𝑚𝑙)2
 (14) 

As the control is performed by an electric motor, the control force 𝐹 exerted on the cart should be replaced by an 

equivalent expression in terms of the control voltage, 𝑉𝑚: 

𝐹 = 𝐴𝑚𝑉𝑚 − 𝐵𝑚�̇� (15) 

where, 𝐴𝑚 represents a motor gain constant, and 𝐵𝑚 represents motor damping due to dissipative effects. Defining 𝐽𝑒𝑞 =

(𝑀 + 𝑚)(𝐽 + 𝑚𝑙2) − (𝑚𝑙)2 and 𝐵𝑒𝑞 = 𝐵 + 𝐵𝑚, the state matrices can be written as follows: 

𝐴 =
1

Jeq

[
 
 
 
0 0 1 0
0 0 0 1
0 (𝑚𝑙)2𝑔 −(𝐽 + 𝑚𝑙2)𝐵𝑒𝑞 0

0 (𝑀 + 𝑚)𝑚𝑙𝑔 −𝑚𝑙𝐵𝑒𝑞 0]
 
 
 

 

(16)  

𝐵 =
𝐴𝑚

𝐽𝑒𝑞

[

0
0

(𝐽 + 𝑚𝑙2)

𝑚𝑙

] ,  𝐶 = [

1 0
0 1
0 0
0 0

]

𝑇

,  𝐷 = [
0
0
] 

In this way, the state-space representation is given by: 

�̇� = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 + 𝐷𝑢 
(17) 

where, 𝑢 = 𝑉𝑚 represents the control voltage, and 𝑦 is the system's output. The LQR controller is of the Full State 

Feedback (FSF) type, and its control law is 𝑢 = −𝐾𝑥. Therefore, the first equation in Eq. (17) is presented as: 

�̇� = (𝐴 − 𝐵𝐾)𝑥 (18) 

where, 𝐾 represents the gain matrix that minimizes the performance index subject to (18), given by: 

𝐽𝑝 = ∫ (x𝑇𝑄𝑥 + 𝑢𝑇𝑄𝑢)
∞

0

 (19) 

The calculation of the gain is performed by: 

𝐾 = 𝑅−1𝐵𝑇𝑃 (20) 

where, 𝑃 is the unique positive definite matrix that can solve the Riccati equation: 

𝑃𝐴 + 𝐴𝑇𝑃 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 (21) 

The matrices 𝑄 and 𝑅 are user-defined Hermitian matrices, both positive definite, which respectively dictate the 

importance of state errors and the inclination towards energy expenditure. In this paper, they are defined as follows: 

𝑄 = [

0.75 0 0 0
0 4 0 0
0 0 0 0
0 0 0 0

]  and  𝑅 = [0.003] (22) 

Resulting in a gain matrix: 

𝐾 = [−50 189.05 −48.80 30.83] (23) 
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The implementation of the physical control system involves the combination of the two controllers developed earlier. 

Since the control law developed in Eq. (7) expresses values in terms of acceleration, it should be converted to voltage, 

just as it is done with the LQR controller. Substituting Eq. (15) into Eq. (12) and equating it to Eq. (7) results in: 

𝑢𝑠 =
𝑢𝑎𝑠 − 𝑓𝑥

𝑔𝑥

 (24) 

where, 

𝑓𝑥 =
−(𝐽 + 𝑚𝑙2)(𝑚𝑙 sin α)α2̇ − (𝐽 + 𝑚𝑙2)𝐵𝑒𝑞�̇� + (𝑚𝑙)2𝑔 sin 𝛼 cos 𝛼                                

(𝑀 + 𝑚)(𝐽 + 𝑚𝑙2) − (𝑚𝑙 cos α)2
 

 

 𝑔𝑥 =
(𝐽 + 𝑚𝑙2)𝐴𝑚

(𝑀 + 𝑚)(𝐽 + 𝑚𝑙2) − (𝑚𝑙 cos α)2
 

(25) 

Figure 3 outlines the steps executed, considering the initial position of the system at 𝑥𝑖 = [0 ±π 0 0], that means, 

down and at rest. The system undergoes an initial impulse, then the condition |𝛼| > 10∘ is checked. While this condition 

is true, the controller will use the gain 𝑢𝑠. When it becomes false, the controller switches the control signal to 𝑢, stabilizing 

the pendulum in its upper position, and then the control process is terminated. Throughout the process, the voltage sent 

to the motor is subject to saturation. In other words, if the controller sends a voltage with magnitude greater than 𝑢𝑠𝑎𝑡, it 

will be limited to ±𝑢𝑠𝑎𝑡. 

 

Figure 3. Flowchart of control application based on pendulum angle 

2.3 Experimental Implementation 

Figure 4 depicts the experimental setup, which includes the LIP and the control hardware, with a focus on the Arduino 

and the printed circuit board (PCB), locally made, for converting and transmitting digital signals to analog ones. The 

experimental process is divided into three main stages that repeat successively: signal acquisition of the state variables, 

computation of the control signal, and sending the control signal to the motor subjected to saturation. The acquisition of 

state signals is done in two sub-stages. Initially, the Arduino reads the signals sent by two incremental encoders - one 

attached to the cart measuring its displacement, 𝑥, and the other attached to the pendulum measuring its angular 

displacement, α. The Arduino sends this data along with the iteration time duration to a computer, where the second stage 

is performed. Using the history of states and time, the computer calculates the velocities of the cart, �̇�, and the pendulum, 

α̇, through numerical differentiation, completing the state 𝑥 for a given instant. 

In the implementation code using the Arduino IDE, the “attachInterrupt” command was used to acquire the signals 

from the encoders. To regulate the acquisition time, a “while” loop checked whether the main microcontroller loop had 

already reached the 6.67 millisecond period. If not, it waited using the “yield” command inside the loop. This way, the 

delay did not affect the interruptions. Next, the control signal is calculated. Initially, the criterion of |𝛼| > 10∘ is analyzed. 

If this condition is met, the control signal will be calculated using 𝑢𝑠. Otherwise, it will use u. This control signal is sent 

back to the Arduino, which passes it to a 12-bit digital-to-analog converter (DAC), GY4725. The output of this DAC is a 

x = 0 ± 0 0

 > 10 

   (   )

        (  )
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signal between 0 and 2 V. It is then sent to an operational amplifier (OpAmp), TL071CP, configured as a rail splitter and 

powered by a symmetric power supply of ±12,V. This setup ensures that a control signal of 0 V corresponds to -2 V, and 

2 V corresponds to 2 V. Finally, a second OpAmp, VoltPAQ-X1, triples this value and provides it to the motor with the 

necessary current, resulting in 𝑢𝑠𝑎𝑡 = ±6V. 

 
Figure 4. Experimental setup with item indications: 1 - Pendulum; 2 - Cart; 3 - Rail; 4 - Operational Amplifier 

VoltPAQ-X1; 5 - Symmetrical power supply of ±12 V; 6 - Arduino Due; 7 - Printed circuit board with DAC GY4725 

and Operational Amplifier TL071CP; 8 - Computer 

The native serial communication of the Arduino was used for the acquisition and transmission of control signals, 

providing more stable and higher sampling rates compared to the standard serial communication of other microcontrollers. 

With this implementation, the system maintained an average sampling rate of approximately 150 Hz, with a maximum 

variation of 0.20 Hz. Figure 5 shows the behavior of this sampling rate during one of the swing-up and stabilization 

processes, which can be considered stable with negligible variations. 

 
Figure 5. Variation in the sampling rate during a swing-up and stabilization process 

3. RESULTS AND DISCUSSION 

The system parameter values used for simulation are listed in Table 1. The results obtained experimentally and 

numerically for each case are shown in Figure 6, with paired graphs for the pendulum's angular position and the cart's 

displacement. In all cases, 𝑢𝑎 = 1.6, and 𝜆 is varied as [3.0 4.5 6.0]. 

Table 1. Physical parameters of the inverted pendulum 

Parameter Value Parameter Value 

𝐽 7.88 × 10−3 kg.m2 𝑀 0.94 kg 

𝑚  0.23 kg 𝐵  1.5 N. s/m  

𝑙 0.32 m 𝐵𝑚 4.81 kg.m2 

𝑔 9.81 m/s2 𝐴𝑚 1.07 N/V 
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In the graphs shown in Figure 6, the pendulum gradually increases its oscillation amplitude until it reaches stability at 

0 or 2π rad (where 𝐸𝑝 = 0), depending on the direction of oscillation. Simultaneously, the cart loses its maximum 

velocity with each oscillation, resulting in smaller displacements in its position, which tends towards the origin. As 

highlighted by Yang et al. [5], the parameter λ can be adjusted to meet the cart's displacement limit in exchange for a 

greater number of oscillations. For example, in the experimental cases with λ =  3.0, the maximum amplitude of the cart's 

movement was 0.32 m, whereas for λ =  6.0, it was 0.26 m, with an increase of two oscillations. 

In all cases, the simulation required one less oscillation for the swing-up. Initially, this is attributed to two sources of 

uncertainty: the physical parameters of the system model and the simulation of the initial impulse. In the lab, the initial 

impulse was manually applied, while in the simulation, it was done by modifying the boundary conditions, adding initial 

velocity to the pendulum. Specifically, α̇λ=3.0, 4.5 = 3.0 and α̇λ=6.0 = 1.4 rad/s. It's worth noting that the existence of 

saturation did not harm the system functionality, in every test the pendulum converged to the upward position. What is 

possible to abstract is that in a scenario without saturation the convergence might happen faster. Figure 7 shows how the 

voltage was applied to the motor in every experiment with 𝑢𝑎 = 1.6, during the swing-up there were instants in which 

the upper or lower limits are reached. It is also noticeable that the voltage pattern applied for stabilization under the LQR 

controller shows a repetitive polarity alternation pattern, a necessary effect to keep the pendulum upright. 

 

Figure 6. Experimental and simulated results of swing-up and stabilization with 𝑢𝑎 = 1.6 and varying 𝜆. 1 and 2 - 

Pendulum and cart position, respectively, for 𝜆 =  3.0; 3 and 4 - Pendulum and cart position, respectively, for 𝜆 =  4.5; 

5 and 6 - Pendulum and cart position, respectively, for 𝜆 =  6.0. Exp and Sim stand for Experimental and  

Simulation, respectively 

Figure 8 illustrates how the swing-up increases the maximum energy of the pendulum with each cycle, moving from 

its initial stationary orbit, where its energy is minimal at −2𝑚𝑙𝑔, to reaching the transition orbit with zero energy. 

Throughout this process, the control law used is  𝑢𝑠; only upon reaching the minimum energy is it switched to 𝑢, which 

corresponds to the LQR controller's control law. The results obtained in this work validate the real-time performance 
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achievable through the combination of the open-source platforms Python and Arduino. Additionally, the results, both 

numerically and experimentally, attest to the functionality of the method presented by Yang et al. [5]. Furthermore, the 

results are qualitatively comparable to those obtained by other authors who implemented similar control rules, such as 

Bellati et al. [14] and Graham and Turkoglu [15]. 

 

Figure 7. Voltage applied to the motor during experiments with 𝑢𝑎 = 1.6 and 𝜆 = [3.0 4.5 6.0] 

 

Figure 8. Phase portrait of angular position [𝛼] and angular velocity [�̇�] with the pendulum's energy gradient for the 

swing-up result with 𝑢𝑎 = 1.6 and 𝜆 = 3.0 

4. CONCLUSIONS 

This work successfully implemented the referenced swing-up method, obtaining equivalent results when compared to 

the existing literature and demonstrating that, through adjustments of control parameters, the approach is suitable for 

analogous systems. The experimental results were consistent with simulations, even in the presence of uncertainties in 

physical parameters and boundary conditions. Furthermore, the application of microcontrollers, such as Arduino, for LIP 

control with swing-up was validated as an alternative to commercial data acquisition and control boards. The necessary 

steps and techniques to achieve sampling frequencies with minimal fluctuations were also presented. 
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