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ABSTRACT - This paper assesses the efficacy of intelligent path planning for welding robots 
utilizing splines. Traditional path planning methods can result in inefficient and inaccurate 
welding operations. The study reviews current research and case studies to appraise the 
practical application of spline-based path planning across diverse industrial scenarios. It 
underscores the benefits of discovering the shortest path and reducing cycle time while 
acknowledging challenges such as calibration accuracy and sensitivity to sensor data noise. 
The introduction of artificial intelligence algorithms in automobile welding path planning 
enables a more precise replication of the body's design curve, ensuring the continuity and 
smoothness of the welding process. This, in turn, fosters further automation and optimization 
of the automotive welding manufacturing process. The current research concentrates on 
integrating intelligent optimization algorithms and spline curves to provide an efficient and 
intelligent method for welding path planning. Intelligent path planning based on spline curves 
demonstrates significant potential in enhancing welding efficiency, determining the shortest 
path, and holds promising applications in the broader research field of welding path planning. 
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1. INTRODUCTION 

To attain manufacturing competitiveness, high productivity, low cost, and superior quality, automated and robotic 

welding is widely employed in the manufacturing sector [1]. On the other hand, manual teaching pendant programming 

is still often used for industrial welding robot task planning, which can be time-consuming, especially when dealing with 

large-scale welding joints or seams [2]. Intelligent robotic welding systems are developed to accomplish desired welding 

results due to their flexibility, efficiency, and precision. A complete intelligent welding robot system can be divided into 

three levels which cooperate with each other to achieve efficient welding. Management decision-making level processes 

information and planning, the system optimization layer optimizes the routing and scheduling and the system control 

layer integrates the system and monitors the parameters (see Figure 1 [3]). The order in which welding routes are arranged 

throughout the welding process can significantly affect variables including path length, energy use, and welding 

deformation. Optimizing the welding path of the robot is usually transformed into a multi-objective optimization problem. 

Among them, this study focuses on the impact of weld tracking, parameter extraction, welding pool monitoring, initial 

point guidance and other factors on the work of welding robots. [4]. In this study, virtual robot software was used to 

simulate the gas metal arc welding robot, and the influence of arc speed, arc length and arc time on welding defects was 

deeply studied [5]. The framework of welding robot route optimization is depicted in Figure 2 [6].  

For industrial robots, path planning is to find an optimal motion path that traverses all task points for the robot  

according to the task and ensure reasonable robot posture [7]. The design of a welding robot's path is seen as a multi-

objective optimization problem, with the avoidance of obstacles serving as a constraint and the optimization of the path's 

length and energy consumption as optimization objectives [8]. Intelligent optimization methods are used to deal with 

these discrete multi-objective optimization issues and produce the desired optimization results. Therefore, the path 

planning ability of robot is improved and the path optimization technology is studied [9]. Geometric information can be 

retrieved from the welding path described in the workpiece CAD model to provide the welding path's position coordinates, 

and then a spline curve can be used to approximated these position values to build a smooth curve, which is an excellent 

way for welding path planning [10]. Saravanan used the NURBS curve to map the path of the robot manipulators so that 

it could satisfy various constraints [11]. The time optimal model for robot path planning is established by the use of Bezier 

curves based on the requirements of a tower crane standard dyne welding robot, which needs to plan its weld path perfectly 

throughout operation [12]. A study was conducted to generate smooth and time-optimal trajectories for industrial robots 

by dividing the path into multiple segments and connecting them using spline curves. This approach reduces  

computational complexity by automatically constraining jerks and eliminating the need for jerk constraints during the 

optimization process [13].  
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Figure 1. Intelligent welding robotic system purpose description [3]  

 

 

Figure 2. Intelligent path optimization structure for welding robot [6]  

When the welds have simple shapes, such as straight lines and broken lines, mathematical models can actually describe 

them [14]. However, mathematical modeling for elaborate welds is time-consuming and only relevant to certain  

work-pieces [15]. During automotive welding, the body structure usually contains a variety of complex curved surfaces 

and shapes [16]. Welding of irregular curves is a challenging task. Spline curve as a smooth curve fitting method, which 

is widely used in path planning, brings many advantages to automotive welding. Therefore, the effective path planning 

method is of great significance to improve the intelligence of welding robots and improve the welding production 

efficiency and quality. Research efforts have concentrated on the development of autonomous and efficient path  

optimization methods to improve robot path planning skills. 

2. PATH PLANNING METHOD BASED ON SPLINE CURVES 

The challenge of path planning in robots is both substantial and intricate. The goal is to ascertain the optimal course 

of action for a robot, starting from a given point and reaching a destination, with the aim of efficiently completing tasks 

or precisely reaching the intended location. Approximation splines are commonly employed for constructing surfaces of 

objects, while interpolation splines are typically utilized for digital mapping and prove beneficial in robot path planning 

[17]. The subsequent sections will provide a detailed analysis of the application of spline curves in the context of path 

planning. 

2.1 The Principle of Spline Curve 

Spline curve is a smooth curve fitting technique widely used in mathematics and computer graphics. Its smoothness 

is determined by its mathematical construction, and curves are defined by a group of control points. These points are in 

charge of the curve's overall shape [18]. The polynomic curve is interpolated through known discrete data points so that 

all the points are connected into a smooth curve. It is simple to calculate, but easy to produce oscillation phenomenon. 

Bezier curve, B-spline curve and the Non-uniform Rational B-spline (NURBS) curve have more advantages. This type 
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of curve can be defined by a set of control points, and the shape of the curve can be easily modified by changing the 

position and weight of these control points. 

2.1.1 Polynomial interpolation  

In the 1970s, with the continuous development of computer science and mathematical modeling techniques, the study 

of path planning gradually became more systematic and in-depth [19]. In this process, Polynomial Interpolation began to 

be widely used. It has the advantages of smoothness and differentiability, and is suitable for describing and controlling 

continuous motion trajectories. To control smoothness in path planning, Lagrange interpolation polynomials are  

commonly used. It is using Lagrange basis functions to approximate a given set of data points. Given 𝑛 + 1 distinct data 

points 𝑃𝑗(𝑥)(𝑥0, 𝑦0), (𝑥1, 𝑦1),⋯ , (𝑥𝑛, 𝑦𝑛) , the expression for the Lagrange interpolation polynomial, as shown in Eq. (1) 

[20]:  

𝑃(𝑥) =∑𝑦𝑗 ∙ 𝑃𝑗(𝑥)

𝑛

𝑗=0

 (1) 

where 𝑃𝑗(𝑥) is the Lagrange basis function defined as Eq. (2) [20]: 

𝑃𝑗(𝑥) = ∏
𝑥 − 𝑥𝑘
𝑥𝑗 − 𝑥𝑘

𝑛

𝑘=0,𝑘≠𝑗

 (2) 

where, 𝑗 = 0,1,⋯ , 𝑛. Each 𝑃𝑗(𝑥) is an n degree polynomial, equal to 1 at 𝑥𝑗  and 0 at other 𝑥𝑘   (where 𝑘 ≠ 0). 

One of the advantages of the Lagrange interpolation polynomial is its intuitive and easily understandable form.  

However, for large datasets, the computation and storage of the Lagrange interpolation polynomial can become complex, 

and potential numerical instability in numerical calculations should be taken into consideration. In recent years, Quadratic 

Polynomial and Membership Interpolation (QPMI) algorithm was recently proposed in a work by Chang and Huh [21]. 

This algorithm avoids Runge's phenomenon  and the weakness of spline interpolation by using only the quadratic  

polynomials and membership functions to create a G2 continuous path [22]. Chang et al. [23] use interpolation to present 

a collision free continuous G2 path. However, their techniques necessitated rewriting smooth pathways and explicit 

collision detection checks, which can be costly in busy environments. Quintic polynomials are used in other  

methods [24]. 

2.1.2 Cubic spline 

An apparent characteristic of the Lagrange interpolation polynomial is that it passes through all given data points. 

However, in certain situations, especially when dealing with a large number of data points, using more numerically stable 

methods such as cubic spline interpolation may be more appropriate [25]. In the late 20th century, with the rise of robotics 

and path planning applications, Cubic spline became a common choice for generating smooth, continuous paths. In path 

planning, when using cubic spline interpolation, a cubic spline function can be employed between every two adjacent 

discrete points. Assuming a set of discrete points on the path as (𝑥0, 𝑦0), (𝑥1, 𝑦1),⋯ , (𝑥𝑛 , 𝑦𝑛), where 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛. 

The cubic spline function on each interval [𝑥𝑖 , 𝑥𝑖+1] can be represented as Eq. (3) [26]: 

𝑠𝑖(𝑡) = 𝑎𝑖 + 𝑏𝑖(𝑡 − 𝑥𝑖) + 𝑐𝑖(𝑡 − 𝑥𝑖)
2 + 𝑑𝑖(𝑡 − 𝑥𝑖)

3 (3) 

where, t is the parameter, usually ranging within the interval  [𝑥𝑖 , 𝑥𝑖+1]. The coefficients  𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖  are determined 

through interpolation conditions. 

The interpolation conditions typically include, as shown in Eq. (4) [22]: 

{

𝑠𝑖(𝑥𝑖) = 𝑦𝑖
𝑠𝑖
′(𝑥𝑖) = 𝑠𝑖−1

′ (𝑥𝑖)

𝑠𝑖
′′(𝑥𝑖) = 𝑠𝑖−1

′′ (𝑥𝑖)
 (4) 

By satisfying these conditions, a system of 4(𝑛 − 1) linear equations are obtained, where n is the number of discrete 

points. In this way, a linear system of equations is formed, and by solving this system, the coefficients for each interval 

can be determined. These coefficients define the cubic spline functions on each interval, forming a smooth interpolation 

for the entire path. In path planning, additional constraint conditions, such as minimum curvature or minimum velocity, 

are often incorporated based on the specific requirements of the problem to optimize the performance of the path planning. 

The interpolation of cubic splines has been used extensively. For instance, the land surface temperatures was regulated 

using cubic spline interpolation [27]. Suspicious values in the temperature observation data can be more clearly  

highlighted by interpolating the temperature measurements for each altitude segment. Additionally, the manipulator's 

route smoothness was investigated and the UAV's trajectory was simulated  using cubic spline interpolation [28].  Jianfang 

Lian et al. [29] proposed a path planning optimization method based on cubic spline interpolation, and proposed a chaotic 

adaptive particle swarm optimization to optimize control points in cubic spline interpolation. To maintain the smoothness 

of the robot's motion path. 
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2.1.3 Bezier curve 

Since 1962, Pierre Bézier, an engineer at Renault Automobile Company in France, introduced a distinctive method 

for the approximate construction of parametric curves and surfaces in Computer-Aided Geometric Design (CAGD) [30]. 

Bezier curve combines modern approximation theory with geometry, which has become an important mathematical 

method of computer-aided geometric shape design [31]. The advantages are obvious. Bezier curve vector equation of 

order N, as shown in Eq. (5) [32]. 

𝜃(𝑢) = 𝐶𝑛
0(1 − 𝑢)𝑛𝑃0 + 𝐶𝑛

1(1 − 𝑢)𝑛−1𝑢𝑃1 +⋯+ 𝐶𝑛
𝑗(1 − 𝑢)𝑛−𝑗𝑃𝑗 +⋯𝐶𝑛

𝑛𝑢𝑛𝑃𝑛  

  

𝜃(𝑢) =∑𝐶𝑛
𝑗(1 − 𝑢)𝑛−𝑗𝑢𝑗𝑃𝑗

𝑛

𝑗=0

 (5) 

where, P0, P1⋯Pj is space vector, 𝑢 is the parameter. 

Bezier curve transition curve advantage, get the approbation of experts. It is applied to robot path planning. It is also 

confirmed that the curves for angular displacement, angular velocity, and angular acceleration are smooth [33]. The  

disadvantage is that Bezier curves and control polygons are far apart, not easy to control; Modifying any control vertex 

on the Bezier curve without local modifiability causes the entire Bezier curve to change [34]. So, the more control vertices, 

the more Bezier curves there are, the more unstable the curves become. 

2.1.4 B-Spline curve 

To address the drawbacks of the Bezier method, the B-spline approach is presented. In 1974, Gordon and Riesenfeld  

used the standard algorithm for parametric B-splines for the first time, based on an in-depth study of the Bezier method 

[35].  Every advantage of the Bezier method is available with the B-spline approach. The B-spline curve is close to the 

control polygon and is therefore simple to adjust. The ability to locally modify a curve is a characteristic of curves [36]. 

B-spline curve's control vertex changes only a few of the linked curve segments. Only the number of B-spline segments 

grows as the control vertices do, not the number of B-spline curves. Therefore, the B-spline method is getting more and 

more attention in CAGD.  

B-spline is one of the geometric representation methods commonly used in CAD systems and has been widely used 

in the field of robot application. The equation of the B-spline of degree p as shown in Eq. (6) [37]. 

𝐶(𝑢) =∑𝑁𝑖,𝑝(𝑢)𝑑𝑖           𝑎 ≤ 𝑢 ≤ 𝑏

𝑛

𝑖=0

 (6) 

where, 𝑑𝑖  is the distance of the control point and is represented as a scalar,  𝑁𝑖,𝑝(𝑢) are canonical B-spline basis functions 

with p degrees, u is the parameter,  𝐶(𝑢) is represented as a scalar. 

B-spline basis function recursive formula, is shown in Eq. (7) [38]: 

{
  
 

  
 𝑁𝑖,0(𝑢) = {

1, 𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑖+1
𝑜, 𝑜𝑡ℎ𝑒𝑟𝑠

𝑁𝑖,𝑘(𝑢) =
𝑢 − 𝑢𝑖
𝑢𝑖+𝑘 − 𝑢𝑖

𝑁𝑖,𝑘−1(𝑢) +
𝑢𝑖+𝑘+1 − 𝑢

𝑢𝑖+𝑘+1 − 𝑢𝑖+1
𝑁𝑖+1,𝑘−1(𝑢)

𝐴𝑝𝑝𝑜𝑖𝑛𝑡 
0

0
= 0

 (7) 

From the above recursive formula, it can be seen that to calculate N(u), ui, ui+1 ⋯ui+k+1 has K+2 nodes. The interval 

[ui,ui+k+1] is called the supporting interval of Ni,k(u). There are many studies on B spline. For roundabout exit traverse 

planners, a parametric B-spline-based path planning approach has been suggested by certain researchers [39]. According 

to certain academic research, high-degree B-spline interpolation has excellent Fourier features, little interpolation error, 

and reasonable computation durations, making it appropriate for using in image processing applications [40]. Some  

scholars studies multi-robot path planning algorithm, effectively addressing the problem by improving the artificial  

potential field method and using B-spline curve optimization [41]. Some scholars proposes a composite A-star and  

B-spline algorithm to generate C2 path that fits the motion constraints of the Autonomous Underwater Vehicle (AUV), 

eliminating the discontinuity caused by multi-segment paths [42]. A method for creating a continuous trajectory from a 

set of waypoints that reflect a static path is presented by certain researchers. Additionally, it outlines a technique for 

quickly altering the trajectory in reaction to a changing environment. [43]. Some scholars present Spline-based  

Convolutional Neural Networks (SCNNs), a variant of deep neural networks suitable for irregular structured and  

geometric inputs like graphs or meshes [44]. B-splines have good localization and continuity, and can effectively  

represent complex free curve surface shapes, so they are widely used. However, when B-spline interpolation or  

approximation is used for curve reconstruction, the parameterization of the data points may affect the final approximation 



G. He et al.│ Journal of Mechanical Engineering and Sciences │ Volume 18, Issue 1 (2024) 

journal.ump.edu.my/jmes  9932 

results. In this case, the nodes in the B-spline can be adjusted or the method of finding better data points can be  

investigated. 

2.1.5 Non-uniform rational B-spline curve   

In 1975, Versprille of Syraeuse University first proposed the NURBS curve in his doctoral thesis [24]. The NURBS 

approach is a useful addition to the B-spline and Bezier methods. It has become one of the most popular techniques for 

describing curves and surfaces. One of the greatest advantages of NURBS curves is that they can represent straight lines, 

conic curves and free curves uniformly [45]. It also has some disadvantages, for example, improper weight selection may 

lead to poor parameterization, or even destroy the subsequent curve and surface structure. There's also a lack of some 

basic algorithms, like the integration algorithm. This brings great limitations to practical applications. Therefore, it is of 

great significance to further study NURBS method so as to improve and perfect NURBS method. The representation of 

the NURBS curve is shown in Eq. (8) [46]. 

𝐹(𝑢) =
∑ 𝑤𝑖𝑑𝑖𝑁𝑖,𝑘(𝑢)
𝑛
𝑖=0

∑ 𝑤𝑖𝑁𝑖,𝑘(𝑢)
𝑛
𝑖=0

, 𝑢 ∈ [0,1] (8) 

In the equation, u is the control variable of the curve with a range of  range[0,1]; k is the number of repetitions, that 

indicates the strength of the interpolation basis function; wi is the weight factor, which is the same as the number of control 

vertices, and it is necessary that w1> 0, wn> 0 as well as all other weight factors be more than or equal to 0; Ni,k(u) is 

called the basis function, which is  chosen based on the node vector., it is shown in Eq. (9) [11]: 

U=[u0,u1,…,uk,uk+1,…,un,un+1, …,un+k+1] (9) 

It only stipulates the selection method of the start and end node vectors, generally select u0= u1= … =uk= 0, un+1= …  

= un+k+1= 1, how many middle n-k vectors can be selected in the two ways, the selection of the node sequence is different, 

and the shape of the NURBS curve is also different. Ni,k(u) represents the basis function, which has many forms, the most 

common and easy understanding is the DeBoor-Cox recursive definition, which is similar to the recursive expression of 

B-spline, as show in Eq. (3) [47]. The NURBS method introduces weighting factors and denominators that enable  

practically accurate representation of standard analytic shapes, such as quadratic curved surfaces. It should be noted that 

most curved surfaces involved in industrial design or scientific research are not necessarily standard analytic shapes. For 

such free-form curved surfaces, the B-spline method is sufficient. The use of NURBS will introduce unnecessary  

parameters and complicate the process. 

2.2 Comparison of Path Planning Methods based on Spline Curve 

The predetermined path is used as the input condition for industrial robot path planning. This results in three output 

parameters, namely displacement, velocity and acceleration, and their relation to time. The two most fundamental path 

planning techniques are joint space path planning and Cartesian space path planning [48]. The former describes the path 

of the robot by changing the function of joint motion angle. Its advantage is that the calculation is simple and fast, and 

there is no need to solve the inverse kinematics. The disadvantage is that there is no way to predict the motion state of the 

robot from the starting position to the set end position. The latter describes the terminal pose motion of the robot in 

Cartesian space. Its benefits are obvious, and the end-effector's path form is simply to see. The substantial quantity of 

calculation is a drawback. Singularities could occur and inverse kinematics is necessary. One study showed that the  

optimization algorithm was combined with the travel time of the five-degree NURBS curve, and the reparameterization 

[46]. This path planning technique effectively lowers the robot's power consumption, accelerates execution, and enhances 

motion smoothness, as shown in Table 1. 

Table 1.  Path planning method based on spline curve 

Method Constraint 
Control point  

flexibility 
Smoothness 

Angular  

displacement curve 
Complexity Reference 

Polynomial  

interpolation 
4 Low Poor 

Large 

displacement 
Simple [49, 50] 

Cubic spline >4 High Poor 
Large 

displacement 
Complex [51, 52] 

Bezier 

Curve 
4 High Good 

Control point 

positions 
Simple [31], [53] 

B-spline 

curve 
>4 High Very good 

Smooth and 

continuous 
Complex [37], [54] 

NURBS >4 High Very good 
Smooth and 

continuous 
Complex [38], [46] 

From the above table, it can be seen that Cubic polynomial and Bezier Curve have a fixed number of control points 

and their adjustment flexibility is low. Higher order polynomial, B-spline curve and NURBS can adjust the position and 

weight of the control points, which can realize more flexible curve shape adjustment. Cubic polynomial has poorer 
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smoothing, and there may be corner points and breaks. Higher order polynomial may generate oscillations and singular 

points, resulting in poorer smoothing. Bezier Curve has poorer smoothing. Higher order polynomial may produce  

oscillations and singularities, resulting in poor smoothing. Bezier Curve has better smoothing. The B-spline curve and 

NURBS have local control and can generate curves with good smoothness. In summary, Cubic polynomial and Bezier 

Curve are commonly used in computer graphics and simple curve fitting, while Higher order polynomial is suitable for 

surface modeling, data fitting and numerical simulation, etc. B-spline curve and NURBS have a wide range of applications 

in computer-aided design, surface modeling and path planning. B-spline curve and NURBS are widely used in  

computer-aided design, surface modeling, and path planning. It should be noted that the performance and applicability of 

different types of curves may be affected by specific application scenarios and the selection of control points, so the most 

suitable type of curve needs to be selected according to the actual application. 

3. INTELLIGENT ALGORITHMS FOR PATH PLANNING 

Scholars are continually improving path planning systems based on simple algorithms. Various path planning  

algorithms arise one after another over a long period of investigation by different scholars. Ioan et al. [55], proposed a 

feasible spatial partitioning method to solve the path generation problem in multi-obstacle environments. Riazi et al. [56], 

using intelligent algorithms to reduce energy consumption and peak power of industrial robots. Palmieri et al. [57],  

compared three bio-heuristic algorithms (firefly algorithm, particle swarm optimization algorithm and artificial bee  

algorithm), and the simulation results showed that in complex scenarios, strategies based on fireflies usually have superior 

performance and can reduce energy waste. Welding robot path optimization mainly includes the following work:  

optimization algorithm, obstacle avoidance strategy, multi-robot cooperative operation, parameter optimization. In order 

to solve the problem of local convergence and small distribution range of non-inferior solutions in discrete multi-objective 

optimization problems, it is necessary to integrate some optimization strategies with intelligent algorithms to obtain ideal 

results. 

3.1 Classification and Description of Intelligent Algorithms  

Although there are many different kinds of intelligent algorithms, they can be broadly categorized into three groups: 

Biological swarm intelligence techniques, evolutionary algorithms (EA) and other algorithms, as shown in Figure 3.  

 

Figure 3. Intelligent  algorithms for welding robot [3] 

3.1.1 Genetic algorithm    

By fitting tests in nature, Genetic Algorithm (GA) replicate Darwin's theory of survival [58]. Holland [59] proposed 

this technique in 1975. Chromosome representation, fitness selection, and biological heuristic operators make up the core 

elements of GA. Holland also created a novel component called inversion, which is frequently used in the creation of 

genetic algorithms [60]. Normally, chromosomes are represented as binary strings. Each locus (a specific region on the 

chromosome) in chromosomes contains two potential alleles (different variations of the gene)- 0 and 1. Chromosomes 

are thought of as points in the solution space. These are dealt with by utilizing genetic operators to substitute their 
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populations iteratively. Each chromosome in a population is given a value applying the fitness function [61]. The 

fundamental procedures are selection, crossover, and mutation, which gradually bring the problem closer to the ideal 

solution. To plan the best faster path, genetic algorithm has been applied often [62]. In one study, genetic algorithms 

played an important role in the digital twin system of welding path planning for arc welding robots in the welding of ship 

sub-components, improving welding efficiency and quality by optimizing and selecting the optimal welding path [63]. 

Yimei Zhang [64] aims to discover a solution to the path planning problem of robots that addresses the problems of slow 

convergence and ease of locally optimal fall off, and proposes an adaptive selection technique based on the assessment 

of population diversity level. The feasibility and effectiveness of the proposed algorithm are verified by simulation in grid 

environment. The genetic algorithm has been widely applied to a wide range of issues because it was proposed earlier. 

The advantages of a genetic algorithm include parallel search, simplicity and universality, great robustness, etc.  

3.1.2 Differential evolution 

Differemtial Evolution (DE) is an evolutionary class of algorithms that mimic the process of natural selection and 

evolution. The optimal solution is found by iteratively improving the population of candidate solutions. Introduced by 

Kenneth Price and Rainer Storn in 1995 [65]. It is a stochastic, population-based optimization technique, which is suitable 

for solving optimization problems in continuous spaces. The DE algorithm operates in a population of candidate solutions 

(individuals), within the search space. It starts with a random initial population of solutions and proceeds through a series 

of generations. In each generation, new candidate solutions are generated by mutation, recombination (crossover) and 

selection operations. DE makes few assumptions about the problem, requires only a few parameter adjustments, and is 

relatively easy to implement [66]. It excels in handling complex, multimodal and nondifferentiable objective functions 

and is suitable for global optimization problems. However, DE also has some drawbacks. For example, it converges 

slowly when dealing with high dimensional spaces or complex optimization spaces. Sensitive to parameter selection (e.g., 

variation rate, crossover rate, and population size). Performs poorly on noisy objective functions or problems with discrete 

variables. 

3.1.3 Memetic algorithm 

Memetic Algorithm (MA) is an evolutionary optimization algorithm that integrates genetic algorithms with local 

search techniques [67]. It performs genetic operations on individuals during evolution and conducts local searches to 

enhance solution quality [68]. In a specific application, a hybrid path planning method based on the meme algorithm was 

proposed to address the intricate path planning problem in the machining of the body in white surface. Operating within 

the meme algorithm framework, the method eliminates redundant nodes and performs post-smoothing processing to  

obtain a smooth, collision-free optimal path set between solder joints. It constructs an objective function for traversing 

all solder joints with the shortest path length and the highest smoothness. Simulation results demonstrate the effectiveness 

of the hybrid path planning method based on the meme algorithm in optimizing the path of a spot welding robot [69].  

MA is primarily applied to combinatorial optimization problems (such as the Traveling Salesman Problem (TSP) and the 

boxing problem), continuous optimization problems (including parameter optimization and function optimization), and 

model tuning problems. By combining global exploration and local search strategies, MA improves the search efficiency 

and convergence speed of the algorithm. Its combination of global and local search makes it more likely to find superior 

solutions, making it applicable to various optimization problems. However, it comes with the drawback of requiring 

careful parameter tuning due to the abundance of parameter settings. 

3.1.4 Estimation of distribution algorithm 

Estimation Distribution Algorithm (EDA) guides the search process by modeling the distribution of solutions in the 

problem space [70]. EDA achieves an efficient search for good solutions by constructing a model of the probability 

distribution of the solutions and generating new candidate solutions based on the model [71]. A study has proposed an 

approach for addressing the path planning problem of Autonomous Underwater Vehicles (AUVs) in dynamic 

environments using the Learning Fixed Height Histogram (LFHH) method based on the EDA. By integrating EDA with 

LFHH and employing a smoothing technique, the method facilitates a faster discovery of feasible paths for AUVs in 

complex dynamic underwater environments [72]. This method is independent of gradient information, making it well-

suited for addressing non convex, multi-peaked, and high-dimensional optimization challenges. It offers valuable insights 

into the distribution of solutions within the problem space. Nevertheless, EDA demands meticulous attention to model 

construction and parameter settings, limiting its application to scenarios like combinatorial optimization, parameter search 

in optimization, and fine-tuning of machine learning models. 

3.1.5 Cultural algorithms 

Cultural algorithm (CA) introduces the concepts of cultural inheritance and social learning, combining individual 

evolution with the propagation of culture [73]. In this study, CA play a crucial role in dynamically  

adjusting parameter weights for different path-planning mechanisms based on the performance of each mechanism,  

contributing to an overall improvement in path-planning effectiveness [74]. These algorithms enhance the search  

capabilities, allowing broader exploration of solution spaces, particularly in optimization problems involving interactions 

among individuals. Despite their effectiveness in addressing complex optimization challenges such as parameter tuning 

and machine learning model selection, drawbacks include prolonged convergence times, intricate algorithm design, and 

the need for careful parameter settings. 
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3.1.6 Particle swarm optimisation 

Particle Swarm Optimization (PSO) is an algorithm that takes inspiration from how birds forage [62]. When flying 

towards a target meal, a bird constantly emulates the flock's top performer in terms of velocity direction and size. For 

time-optimal Delta robot path planning, some researchers suggested an improved particle swarm optimization approach. 

It also realizes obstacle avoidance height control ability [75]. Some academics proposed a direct route planning method 

based on fuzzy reward and punishment theory and enhanced PSO. Its goal is to improve the efficiency of path planning 

for specific mission objectives [76]. According to the operation requirements of a citrus harvesting robot, a new 

optimization technique for harvesting sequence planning has been proposed. Inverse kinematics scheme selection and 

sequential programming dynamic programming are both realized. The results of simulations demonstrate that this strategy 

saves energy [77]. Some researchers proposed a PSO adjusted PID controller. It is used to regulate the orientation of the 

flexible manipulator both directly and indirectly in order to lessen the manipulator's vibration [78]. Some researchers 

proposed the genetic algorithm and the discrete particle swarm optimization algorithm as intelligent welding path 

optimization techniques to optimize the welding robot's path. By optimizing operator selection, GA achieves the highest 

generation adapted to the specific [79]. The simplicity of use and quick convergence of the particle swarm algorithm are 

advantages. It is frequently utilised in a variety of applications, including system identification, neural network training, 

combinatorial optimisation issues, multi-objective constrained optimisation, and others.      

3.1.7 Ant colony algorithm 

The fundamental principle of the Ant Colony Algorithm (AC) is derived from the observation that ants eventually 

discover the shortest path by releasing pheromones and using the size of the pheromone concentration while searching 

for food over time [80]. The traveler path planning problem was the main application for the ant colony method at first. 

Due to the local region or neighborhood's tiny size and constrained scope inside the optimization problem, the search 

efficiency is highly evident. However, the ant colony algorithm will encounter the issue of sluggish convergence when 

the constraints on the problem are relaxed or the number of swarms is very high [81].  Ye Xuan et al. [80] incorporated 

energy loss, processing time, and path smoothness as optimization objectives in their study on coverage path design. They 

employed an enhanced ant colony algorithm in their research and proposed two approaches to prevent the algorithm from 

converging to a local optimum, thus enhancing the system's global search capability. The DL-ACO algorithm, a successful 

double-layer ant colony optimization method for autonomous robot navigation, was created by certain researchers. Two 

concurrently running ant colony algorithms make up the DL-ACO. The findings indicate that this approach can produce 

more collision-free paths [82]. A variety of methods of improvement have been put forth in recent years by scholars from 

various nations to increase the convergence of their algorithms. This technique has been used to solve issues related to 

vehicle scheduling, large-scale integrated circuit design, and robot collaboration in various ways. 

3.1.8 Artificial bee colony algorithm 

Artificial Bee Colony (ABC) algorithm simulates the search strategy of bees when searching for food [83]. To achieve 

the best time and distance, Savsani [84] presented a path-planning strategy based on an enhanced artificial bee colony 

algorithm. The artificial bee colony approach was improved by combining the proper learning algorithm with the joint 

Angle, angular velocity, and running time as parameters. According to the experimental data, the updated artificial bee 

colony algorithm may successfully optimize the travelling distance and time. The search and updating of candidate 

solutions is achieved by recruiting the roles of worker bees, observer bees, and scout bees. ABC is simple to apply, easy 

to implement, and requires fewer parameters to be tuned. However, it exists a slow convergence speed and is not suitable 

for complex problems. It is mainly applied in machine learning model parameter tuning and path planning. 

3.1.9 Cuckoo search algorithm 

Cuckoo Search Algorithm (CS) simulates the foraging behavior of cuckoo populations for new nests, utilizing random 

generation and updating of nests for solution search  [85]. Wang et al. [86] proposed a hybrid path planning strategy for 

unknown 3D environments by combining differential evolution algorithms with CS to accelerate global convergence. 

This faster convergence enhances the exploration capabilities of aerial robots in three-dimensional environments. Xie et 

al. [87]  demonstrated three-dimensional environment exploration using the CS algorithm, specifically addressing air path 

planning. The enhanced CS model integrates differential evolution to streamline the cuckoo selection process, allowing 

the bird to act as an agent in determining the optimal course of action. While simple and easy to implement, it exhibits 

sensitivity to parameter settings and requires careful tuning, resulting in slow convergence for complex problems. CS 

finds application in scenarios like parameter tuning and vehicle path planning, showcasing some global search 

capabilities. 

3.1.10 Grey wolf optimizer 

Grey Wolf Optimizer (GWO) emulates the collaborative strategy observed in wolf packs during the predation process, 

conducting solution searches by modelling the behaviour of leaders and followers within the pack [88]. Dewangan et al. 

[89] demonstrated that the Enhanced GWO algorithm exhibits superior capabilities in avoiding local optimality and  

exploring the search space. Ge et al. [90] proposed a hybrid algorithm by combining GWO with the Fruit Fly Optimization 

(FFO) algorithm to enhance local optimal solutions. Kamalova et al. [91] utilized a set of boundary points as input  

parameters, employing the global waypoint control technique of boundary-based exploration to generate points in  
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unexplored areas without sensor signal transmission. GWO demonstrated superior searching performance compared to 

the PSO algorithm. It possesses both global and local search capabilities, making it applicable to various optimization 

problems. However, its sensitivity to parameter settings requires careful adjustment. GWO is predominantly utilized in 

function optimization, such as tuning machine learning model parameters. 

3.1.11 Simulated annealing algorithm 

Kirkpatrick et al. [92] presented simulated annealing algorithm, a meta-heuristic method based on a single solution. It 

can be compared to a hill-climbing strategy that iteratively seeks to enhance the most recent answer in terms of the goal 

function. The algorithm will accept better moves while rejecting fewer wealthy moves, which will increase the probability 

of eliminating the local optimal solution. The simulated annealing algorithm is simple to implement and  

requires fewer parameters in the algorithm. It is well adapted to obtain better global search results in nonlinear problems 

involving multiple constraints with large spatial diversity [93]. However, the simulated annealing algorithm is  

computationally intensive and takes a long time by randomly exploring and accepting inferior solutions. The initial  

solution has a large influence on the results, which tends to reduce the convergence speed and accuracy of the algorithm. 

3.1.12 Immunization algorithm 

The immunization algorithm is based on the principle of biological immunity, where the antigen corresponds to the 

problem to be solved and all possible solutions are antibodies [52]. Diversity does not need to be actively preserved 

because cells divide asexually, which means that even the slightest difference will be multiplied exponentially after  

numerous differentiations. The fact that self-equilibrium regulation makes use of concentration regulation mechanisms to 

either encourage or inhibit the maintenance of population variety is its biggest benefit [94]. A path planning method for 

underwater vehicles based on immune genetic algorithm is proposed in this paper. This method combines genetic 

algorithm and immune algorithm to optimize the path planning. Simulation results show the effectiveness of the proposed 

method [95]. The algorithm is better protected from entering the local ideal solution thanks to this design, which  

considerably enhances the local optimal capability and has a significant impact on the promotion and suppression of the 

concentration of the antibody population. The presence of memory cells can greatly improve the search speed and 

operational efficiency. 

3.1.13 Tabu search algorithm 

Tabu search is a local search-based optimization algorithm designed to prevent getting trapped in local optima by 

incorporating a "taboo table" [96]. This table records explored solutions and specific move operations, guiding the search 

process for improved exploration of the solution space. Khaksar et al. [97] integrated tabu search for intelligent sampling, 

employing two strategies—uniform sampling and Gaussian sampling—in the path planning process. Testing in diverse 

environments resulted in relatively shorter path lengths, faster running speeds, and lower memory and  

computation requirements. Lee et al. [98] introduced a distance-constrained multi-robot task path planning algorithm, 

combining mixed tabu search and 2-opt path planning. This algorithm excels in both path optimization and runtime, 

producing shorter, smoother paths with reduced energy consumption for multiple robots coordinating tasks. It effectively 

avoids local optimal solutions and exhibits some global search capabilities. However, it requires careful parameter  

adjustment due to its numerous settings. It is commonly utilized in combinatorial optimization problems like the  

TSP and graph colouring problems. 

3.1.14 Chaos optimization algorithm 

The chaos optimization algorithm explores solutions by incorporating chaotic mapping to generate a sequence of 

random numbers as candidate solutions in the search space [99]. In a related study, a novel approach to robot trajectory 

planning is introduced using a genetic chaotic optimization algorithm. This method employs a quintic polynomial to 

interpolate position nodes in the joint space, creating a trajectory model for the robot's motion. Subsequently, a genetic 

chaotic optimization algorithm, merging genetic and chaotic algorithms, is applied. The study demonstrates, through 

simulation and analysis, that this approach, considering velocity, acceleration, and acceleration constraints, achieves a 

smooth and time-optimal trajectory for the robot's end-effector [100]. The algorithm leverages the randomness and  

sensitivity of the chaotic nature to enhance search diversity. However, the algorithm's performance is influenced by the 

parameter settings and the choice of the chaotic map. It is commonly applied to parameter estimation problems in signal 

processing. 

3.1.15 Quantum search algorithm 

Quantum search algorithm simulates the characteristics of quantum superposition and coherence, employing 

"quantum bits" to search for solutions and reach the target solution in fewer iterations [101]. Another study introduces a 

robot path planning algorithm based on the Quantum-inspired Evolutionary Algorithm (QEA), tailored for large-scale 

optimization problems. Operating in a discretized environment, the QEA efficiently approximates optimal robot paths, 

surpassing the performance of traditional genetic algorithms in both static and dynamic scenarios. With a runtime of 

approximately 2 seconds, the proposed QEA demonstrates notable efficiency in addressing robot path planning 

optimization [102]. The quantum search algorithm excels at finding the target solution with fewer iterations. However, 

its implementation and understanding are relatively complex, requiring some knowledge of quantum computing. It is 

commonly applied to function optimization, particularly for optimization problems involving complex functions.  
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3.2 Comparison of Common Intelligent Algorithms for Path Planning of Welding Robots 

Among numerous intelligent algorithms, genetic algorithms, particle swarm optimization, and traditional techniques 

are predominantly employed in the path planning of welding robots. Each algorithm comes with its own set of advantages 

and limitations, making it crucial for researchers and engineers to meticulously evaluate and choose the most suitable 

algorithm tailored to the specific requirements of welding tasks. In this comparative analysis, factors such as  

computational efficiency, convergence speed, and search capability will be examined. The objective of this study is to 

offer valuable insights into the selection of optimal algorithms that align with the unique demands of welding robot path 

planning. The performance of each optimization algorithm is compared in detail, as shown in Table 2.  

By comparing their convergence speed and model complexity properties. The category of fast convergence speed and 

relatively low model complexity includes algorithms such as DE, GA, and ABC. These algorithms are able to converge 

to a better relatively quick solution during the optimization process, while their models are relatively simple and suitable 

for the fast solution of some problems. Algorithms with medium convergence speed and model complexity include CA, 

CS, TS, PSO, and WPA. These algorithms are able to strike a balance between optimization speed and model complexity, 

approaching the optimal solution relatively quickly while handling a certain degree of problem complexity. Among the 

algorithms with slower convergence speed and higher model complexity can be found EDA, Chaos Optimization,  

Quantum Search, AC, SC, and Immune algorithm, etc. These algorithms may require more computational resources and 

time but have the potential to handle more complex problems and find high-quality solutions. 

4. INTELLIGENT PATH PLANNING APPLICATION OF WELDING ROBOT BASED ON 

SPLINE CURVE 

Intelligent path planning is an important field in the application of industrial robots. Its goal is to generate an optimal 

or near-optimal motion trajectory for robots. Spline curve is a mathematical tool that can be used to describe smooth and 

continuous trajectories, so it is widely used in path planning of industrial robots. In this part, the application of a single 

curve in path planning is reviewed [108]. Then, an intelligent path planning method based on spline curve is listed, which 

uses the spline curve to model the trajectory of the robot and optimizes the spline curve through intelligent algorithms 

(such as ant colony algorithm, genetic algorithm, etc.) to find the optimal or near-optimal trajectory that meets various 

constraints to realize the intelligent path planning of the robot. 

4.1 Bezier Curve Compensates the Motion Deviation of FSW Robot   

An novel method for solid state welding of aluminum alloys utilizing robots is robotic friction stir welding (RFSW) 

[109]. The robot joints would experience elastic deformation of up to 10 kN during friction stir welding (FSW), which is 

a drawback of the method and can result in tool deviation and improper alignment [110]. Due to high forces, lateral tool 

deviations of several millimeters can be observed [111]. This results in the need to make necessary adjustments to the 

off-line planned paths to achieve high precision. Therefore, deflection compensation should be set up for the path planning 

of RFSW [112]. There are both online and offline deflection compensation strategies available. Online compensation 

technique is based on feedback control and uses sensors [113] or deflection models [114] for real-time compensation. It 

has been proposed that a path deviation compensation method for robot offline welding based on Bezier curve [108]. In 

this example, a Bezier curve is utilized to generate an optimized path with deflection using the y and z coordinate values 

taken from the CAD model. As shown in Figure 4, the effectiveness of Bezier curve in robot path planning is proved.  

 

Figure 4.  Path comparison in the z direction of the robot [53] 
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Off-line compensating techniques are based on deflection knowledge prior to welding. Typically, the tried-and-true 

approach is used. Before conducting the second experiment, the first must be completed, including any deviations being 

investigated and the data being integrated. This is a labor-intensive and time-consuming approach. Another offline  

feed-forward control method involves simulating the robot's deflection with a stiffness analysis, adding it to the desired 

path, and then finding the optimal path. These technologies are used in robot milling [115]. Cubic curve and quintic curve 

are used respectively to plan the optimal path between adjacent nodes with velocity, acceleration and pulsations  

constraints, and the two different methods are compared and analysed [116]. Comparison of experimental results between 

Bezier curve and robot master, please refer to [33]. 

Therefore, the optimal position and orientation of the welding tool in the sinusoidal welding route are offline generated 

using spline curve approximation techniques. A smooth path can be created because the spline curve function is infinitely 

differentiable. This welding path's low order approximation, which was obtained, is accurate enough. NURBS curves can 

be researched for other extremely complex pathways. 

4.2 Application of the B-Spline Curve in the Directional Path Planning 

A smooth path ensures that the motion follows a continuous curve with no breakpoints. This is one of the key points 

of path planning research [117]. Optimization techniques are proposed in [118] and [24] to allow smooth trajectories to 

be generated through the desired direction. A spline approach that roughly minimizes angular acceleration is given for 

creating direction trajectories in [34]. In  [119], the curvature interpolation algorithm is also presented. Their applications 

are more potential due to their computational complexity and robustness. In other words, the approximated frame  

orientation or stated configuration interpolation smooths the angular velocity and its time derivative. This ensures that the 

robot's joint motor torque remains consistent. This method is the industry standard for constructing paths between two 

directions because it is simple to calculate. This example is the path planning of an industrial robot polishing a car fender. 

With the research goal of forming a smooth direction path planning. Car fender path generated by the path point, please 

refer to [120]. The experiment's parameters are computed using B-splines and are based on the exponential mapping of 

quaternions. Each B-spline results from a quaternion or quaternion derivative in the needed direction. From the 

experimental results, it can be seen that the B-spline path passes through each point accurately, please refer to [120]. The 

angular acceleration is significantly reduced, as shown in Figure 5.  

 

Figure 5.  Angular acceleration of the planned path [120] 

Other, the different approach is proposed in [10], using spherical linear interpolation（SLERP） in combination with 

mixing functions, such as Bezier curves or B-spline curves, for achieve precise initial and terminal directions  

(quaternions). In [121], an incremental path planning method based on SLERP is proposed. In this method, continuous 

tangents are obtained by calculating the intermediate points, but only a continuous curve of C1 is obtained. This is not 

accurate enough for robotic applications. Some researchers using cubic B-spline curve interpolation, planned the  

time-smoothness comprehensive optimal path suitable for welding or grasping robots [122]. A method using B-spline 

parameterized rotation to achieve smooth path direction planning has proposed [123]. Some researchers proposed a virtual 

node interpolation method in which B-spline curves were incorporated into the virtual node interpolation. This approach 

is particularly suitable for closed pathways to construct an ideal B-spline curve, which is utilized to generate smoother 

and shorter paths [124]. Each B-spline is computed in terms of the desired direction of the quaternion or quaternion 

derivative and is an optimized scheme. It can be seen that control points are computed by B-spline curves through a 

specified set of directions. This method is to control the smoothness of the path effectively.  

4.3 Application of Intelligent Path Planning based on B-Spline Curve 

With the development of artificial intelligence technology, the path planning of industrial robots will be more 

intelligent and autonomous, and can better adapt to complex working environments and task requirements [125]. It is a 

good idea to use intelligent control method to complete the path planning of welding robot to improve the working 

efficiency of welding robot and reduce the working time [126]. The path planning problem of welding robot can be 
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regarded as a travel promotion problem, and each position node is regarded as a welding point. The traditional path 

optimization method of weld sequence selection based on experience has large time consumption and limited accuracy. 

In this example, the Ant Colony Algorithm (ACO) is used for parameter optimization, which improves the global search 

performance of the algorithm [127]. Then the B-spline curve interpolation method is combined with genetic algorithm to 

carry out segmentation optimization, which greatly reduces the time of path planning. 

Under the premise of determining the welding points, when the robot traverses all the welding points, the ant colony 

algorithm proposes the correct path within the constraints according to the principle of the shortest foraging behaviour of 

the biological ant colony [128]. The path selection strategy of the initial ant colony algorithm has limitations. Therefore, 

in the iterative calculation process of the algorithm, the path selection of ant colony tends to be the path with higher 

pheromone concentration. In order to ensure the stability of the algorithm in complex computational convergence, this 

study combined the global pheromone with the path length model to calculate the pheromone increment. The probabilistic 

selection of iterative calculation is introduced into the interference factor to improve the global path optimization  

capability, as shown in Eq. (10) [129]. 

𝑃𝑖𝑗
𝑎(𝑡) = {

𝜏𝑖𝑗(𝑡) × (
1

𝑑𝑖𝑗(𝑡)
)

𝜇×𝑒𝜇/𝑡

 , 𝜇 × 𝑒𝜇/𝑡 ≥ 𝑃0 

𝑃𝑖𝑗
𝑎(𝑡),                                𝜇 × 𝑒𝜇/𝑡 < 𝑃0

 (10) 

where, 𝜇 is the random interference scale factor, and its value range is [0,1], 𝜇 × 𝑒𝜇/𝑡 is the inverse index value of the 

disturbance factor; 𝑃𝑖𝑗
𝑎(𝑡) is the likelihood that the 𝜏𝑖𝑗(𝑡) ant t chooses j from the location to the place i at the moment, 

and 𝑡 denotes the information concentration. 

After solving the problem of shortest path, next solve the problem of shortest time. First, according to the basis  

function of cubic B-spline curve, as shown in Eq. (7). The overall equation table of B-spline curve is derived, as shown 

in Eq. (11) [130].    

𝑃(𝑡) =∑𝑉𝑖𝑁𝑖,𝑘(𝑢)

𝑘

𝑖=0

 (11) 

where, 𝑉𝑖 is the arrangement number of the curve's vertices,  𝑖 represents the position point number, 𝑘 is dimensions of a 

spline curve, and 𝑢 value interval is [0, 1]. 

The fixed point trajectory of welding robot is planned by cubic B-spline curve. The time optimization function of path 

planning is determined as the objective function of genetic algorithm, and the objective function is shown in Eq. (12) 

[107]. 𝑛 is the welding point, so the trajectory of the welding robot is divided into 𝑛 − 1 time periods, and the time periods 

are represented as 𝑇𝑖 . 

𝑇𝑚𝑖𝑛 = min  [𝑇1 + 𝑇1 +⋯+ 𝑇𝑖−1] = min∑𝑇𝑖

𝑛−1

𝑖=1

 (12) 

where, 𝑛 is the welding point, hence the trajectory of the welding robot is divided into 𝑛 − 1 time periods, and the time 

periods are represented as 𝑇𝑖 . 

In order to optimize the output of fixed-point path in the shortest time, the fitness function of genetic algorithm and 

cross mutation operator are used to optimize the trajectory planning of cubic spline interpolation. A penalty function is 

introduced into the trajectory planning of the total B-spline curve equation to determine the fitness function of the genetic 

algorithm, as shown in Eq. (13) [127].  

𝐹(𝑡) =
1

𝑇𝑚𝑖𝑛 + 𝜎𝑃̅(𝑡)
 (13) 

where, 𝜎 is the punishment factor, 𝑃̅(𝑡) is the penalty item. For the specific mathematical expression of the penalty item, 

as shown in Eq. (14) [127]. 

𝑃̅(𝑡) = ∑|max (𝜃𝑚
𝑚𝑎𝑥 , 𝜃𝑚(𝑡))|

𝐺

𝑚=1

+ ∑|max (𝜔𝑚
𝑚𝑎𝑥 , 𝜔𝑚(𝑡))|

𝐺

𝑚=1

+ ∑|max (𝜌𝑚
𝑚𝑎𝑥 , 𝜌𝑚(𝑡))|

𝐺

𝑚=1

 (14) 

The experiment compared the joint angle and angular velocity of a robot using both the optimized joint algorithm and 

the traditional B-spline curve difference method. Figure 6 illustrates a broken line trend, indicating that the joint angle 

and angular velocity under the joint algorithm are consistently lower than those achieved with the B-spline curve  

difference method. It is observed that the maximum angular difference of joint angle is 3.7 radians, and the maximum 

angular difference of angular velocity is 2.2 radians. These results demonstrate that the optimized scheduling provided 

by the joint algorithm effectively reduces joint vibration amplitudes and stabilizes starting and stopping speeds during the 

task. Consequently, the optimization algorithm proves to enhance the welding quality of the robot while simultaneously 

reducing its energy consumption.  
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Figure 6. Comparison of robot performance between single B spline curve method and optimized joint algorithm [127] 

In the realm of industrial robot path planning, the combined utilization of intelligent algorithms and spline curves not 

only facilitates the determination of the most efficient welding path but also empowers the robot to navigate through 

intricate and challenging working environments and constraints with agility. This integrated approach serves to  

significantly improve overall work efficiency in welding operations. 

5. CONCLUSIONS 

Through a comprehensive evaluation, it is found that the use of spline curves in welding robot path planning offers 

advantages over traditional methods. The continuous and flexible representation of the path results in smoother welding 

transitions, ultimately improving welding quality and productivity. Previous research and case studies have shown the 

success of spline curve welding path planning in various industrial settings. Particularly, in the automotive industry, spline 

curves play a crucial role in design, manufacturing, and repair processes. Spline curves accurately replicate the design 

curves of car bodies, ensuring the continuity and smoothness of welding processes. Intelligent algorithms play a key role 

in welding robot path planning by optimizing path planning and control strategies through extensive data preprocessing 

and prediction. These algorithms enable efficient searches for optimal solutions, particularly in finding spline curves that 

meet specified constraints in curve fitting and path planning. Future research will focus on four main aspects. 

i) The research concentrates on optimizing B-spline curves by exploring techniques specifically tailored for control 

points and weights. The study delves into the integration of B-spline curves with diverse global fitting techniques, 

ensuring a comprehensive approach. Additionally, the application of B-spline curves under various path planning 

strategies is examined, accounting for dynamic environments and collision avoidance to enhance their practical 

utility. 

ii) The primary objective is to seamlessly integrate B-spline technology with human-computer interaction. This 

integration aims to create a more intuitive and efficient path planning process, specifically designed for industrial 

welding robots. By prioritizing the user experience through HCI, the research aims to enhance the overall 

functionality of path planning systems. 

iii) Intelligent algorithms remain a central area of exploration, with a continuous investigation into different hybrid  

algorithms. The emphasis is on addressing practical path planning problems and facilitating cooperative path 

planning between robots. The research also prioritizes the application of intelligent algorithms for path 

optimization,  

particularly in high-dimensional complex environments, ensuring adaptability and efficiency. 

iv) The overarching development direction emphasizes the integration of both spline curves and intelligent algorithms 

for path planning. This fusion aims to enhance the overall efficiency and adaptability of industrial welding robot 

systems. By laying a solid foundation for further advancements in the field, the integration seeks to provide a 

holistic and synergistic approach to path planning improvements. 
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