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ABSTRACT - Intermittent machining is characterized by its complex and irregular context. 
This intermittency causes machining to occur under difficult conditions that greatly influence 
the technological performance parameters. The aim of the present work is to evaluate the 
effects of input parameters, cutting speed, Vc, depth of cut, ap, tool nose radius, r and feed 
rate, f, on surface roughness, Ra, tangential cutting force, Fz, motor power consumption, Pm, 
cutting power, Pc and material removal rate (MRR), during intermittent turning (IT) of AISI D3 
tool steel. Machining was performed with a triple CVD coated carbide tool (AI2O3/TiC/TiCN) 
by adopting a Taguchi L9 (3^4) experimental design. The ANOVA and RSM methods were 
used to analyze the effects of cutting factors on the outputs parameters resulting in statistical 
prediction models. In addition, a multi-objective optimization of the cutting conditions exploiting 
the desirability function (DF) was done according to four cases of relative importance 
corresponding to different industrial contexts. Furthermore, the grey relational analysis (GRA) 
method was applied and compared with the DF method. The results show that the optimal 
regime found by the DF method, (r =1.6mm, Vc= 240 m/min, f = 0.084 mm/rev and ap = 0.64 
mm), favors Ra and MRR. On the other hand, for the GRA method, the combination of (r = 0.4 
mm, Vc = 240 m/min f = 0.08 mm/rev and ap = 0.3 mm) favors the minimization of Fz, Pm and 
Pc. This work presents an originality because the results found are very useful in the field of 
optimization for a better control of the process IT. 
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1.0 INTRODUCTION 

The machining operation encompasses several different technological parameters, and the control of all of them is an 

industrial goal that depends on the context of machining, the machined material, and the number of factors studied [1, 2]. 

The discontinuous geometry of the part, the specific mechanical properties of the material, as well as its industrial 

destinations, impose additional difficulties on the manufacturer. Intermittent turning of materials is considered difficult 

machining, characterized by its complex and irregular context. This intermittent causes machining under severe conditions 

that greatly influence the technological performance parameters [3]. The exploitation of modeling and optimization 

methods is very effective for studying this kind of machining operation that can offer the desired interest to industrialists 

[4]. 

In this context of IT machining, several research works have been carried out. Ko et al. [5] conducted a study on the 

IT of bearing steel made of AISI 52100 to evaluate the performance of CBN cutting tools with different nitride contents. 

The output factors VB, Ra, and Fz were monitored. The results prove that increasing the nitride content induces a decrease 

in Ra and VB. Liu et al [6] performed experiments in IT of 2.25Cr1Mo0.25V steel with two different cutting tools of YT5 

and GC4235.  The obtained results showed that the tool performance GC4235 is superior to the tool YT5. Liu et al [7] 

conducted experiments in IT on 2.25Cr-1Mo-0.25V material with a coated carbide tool GC4235. Empirical models of 

MRR and Fz parameters as a function of Vc, ap, and f were proposed. Also, at low cutting speeds, abrasive wear and 

spalling were the main wear mechanisms; however, at high speeds, coating delamination and adhesive wear are prevalent. 

Carou et al [8] examined the effects of feed rate, MQ lubrication and type of workpiece interruption on vibration during 

Intermittent machining of UNS M11917 magnesium alloy using an uncoated carbide tool.  F. Gong et al [9] conducted 

an experimental study in IT of 20CrMnTi hardened steel using Al2O3-TiC ceramic. The cutting forces and failure 

mechanisms of the cutting tools were evaluated as a function of varying cutting conditions.  An experimental investigation 

was performed by Cui et al [10] to identify the optimal cutting parameters in the IT of AISI 1045 steel using an Al2O3/(W, 

Ti)C ceramic cutting tool. The results found allowed for an optimal area of surface roughness, cutting energy, and specific 

energy consumed using finite element method (FEM) as the optimization method. 

Recently, Kudryashova et al. [11] conducted experimental study in IT, in order to understand the stabilization of 

cutting tools on complex surfaces. The analysis of the results showed that Ra is improved by 20% to 70% if a tool with a 

damping element in IT replaces the standard tool. In addition, Nayak et al. [12] performed a comparison between CT and 
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IT of AISI D6 tool steel using a tool with low CBN content. The results found in IT show that Vc does not affect the 

cutting forces, and the wear mechanisms are abrasion and diffusion.  

On the other hand, AISI D3 high-alloy steel has been the subject of several experimental studies that focus on 

machinability, MQ lubrication, tool wear, modeling, and optimization of cutting conditions [13-20]. Also, the desirability 

function approach is among the multi-objective optimization methods extensively used in many industrial sectors because 

of the advantages it presents [21-28]. Several researchers have adopted the GRA method as a multi-objective optimization 

method for cutting conditions due to its effectiveness in making the right decision for selecting the optimal parameters 

[29-35]. 

The review of the previous literature clearly shows that intermittent turning presents a case study frequently 

encountered in the industry, and this particular case of machining deserves special attention in order to evaluate, model, 

and optimize the technological performance parameters. Also, the particularity of this work lies in the fact that little 

investigation has been carried out on the intermittent turning of AISI D3 steel by considering the particular intermittent 

form on the workpiece and by considering four factors of input and four factors of output technical characteristics. Add 

to this, a comparison of the optimal cutting regimes obtained by two distinct optimization methods of DF and GRA. 

The present work aims to evaluate the technological performance parameters namely Ra, Fz, Pm, Pc and MRR as a 

function of cutting conditions r, Vc, ap, and f of AISI D3 steel in IT context. ANOVA was used to quantify the influence 

of input factors on the responses. The statistical treatment of the results allowed us to propose prediction models in IT. 

Two multi-objective optimization methods were performed by exploiting the DF and GRA approaches according to 

objectives frequently found in the industry. The results found are of primary importance to researchers working on multi-

objective optimization problems of operating factors during intermittent machining. 

2.0 EXPERIMENTAL PROCEDURE 

2.1 Machined Material and Cutting Tool 

The material of study is high-alloy steel AISI D3, intended for cold work with a very high resistance to abrasive wear, 

medium toughness, dimensional stability, and high resistance to compression. This material has a wide application in the 

industrial field, such as in machining and forming tools such as punches, and rolling mills, as well as the manufacture of 

measuring  instruments such as gauges, stamps, and gauges [25]. The chemical composition of AISI D3 steel is shown in 

Table 1. The workpiece used in turning tests is 185 mm in length and 70 mm in diameter.  In order to ensure intermittent 

turning us made three bearings over a length of 85 mm, the width of the groove is 3.33 mm. A cutting insert composed 

of eight cutting edges made of triple-coated metal carbide (Al2O3/TiC/TiCN) of the Sandvik brand GC4215 was used for 

IT tests as shown in Figure 1. It is mounted on a tool holder on ISO designation PSBNR 2525M12 with geometry 

represented by γ=−6°, λ=−6°, α=6°, and χr=75°. For each machining operation, the cutting tool undergoes three (3) shocks 

successively.  

Table 1. Chemical composition of AISI D3 steel 

Composition C Si Ni Mo Mn S P Cu Cr 

Percentage (%) 2 0.31 0.259 0.124 0.29 0.009 0.011 0.162 12 

 

 

Figure 1. Cutting tool; (a) coating layer, (b) cutting insert and (c) tool holder 

2.2 Measuring Devices and Experimental Design  

Intermittent turning experiments were performed on a Tos Trencin SN40C brand lathe with 6.6 kW of power, 

following the standard ISO 3685. The lathe is equipped with a variable speed drive, model ABB series ACS355, with a 

speed sensor allowing the control of spindle speed. The value of the Ra criterion was measured with a roughness tester 

model MITUTOYO SJ-210 as shown in Figure 2(a), 2(b) and 2(c). It consists of a 5-μm diamond tip feeler that moves 

axially over a distance of 4 mm with a cut-off = 0.8 mm on the machined surface. The measurement is repeated three 

times, following an angular position of 120° for each test. The tangential cutting force Fz , was recorded in real time using 

a Kistler dynamometer type 9257 B, as can be seen in Figure 2(d), 2(e) and 2(f). Figures 2(g), 2(h) and 2(i) show the 

measurement of motor power consumption, Pm using a LUTRON DW-6095 three-phase power analyzer in real time 

throughout the intermittent machining operation. The entire experimental procedure is shown in Figure 2. In order to 
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investigate the influence of the selected input parameters on the targeted response parameters, a L9 (3ˆ4) Taguchi 

experimental design was chosen to reduce the cost of the experiments and simplify the experimental protocol. The 

operating conditions chosen to perform the experiments and the values of the cutting parameters are organized in Tables 

2 and 3. 

 

Figure 2. Equipment and materials 

 

Table 2. Operational conditions 

Elements Description 

Lathe SN40C (6.6 kW) 

Workpiece AISI D3 

Cutting tool AI203/TiC /TiNC Carbide insert (CVD) 

Tool holder SANDVIK PSBNR 2525M 12 

 

Table 3. Cutting conditions 

Elements Description Values 

Input parameters 

Cutting speed (Vc) 240 ; 280 ; 320 (m/min) 

Feed rate (f) 0.08 ; 0.12 ; 0.16 (mm/rev) 

Depth of cut (ap) 0.3 ; 0.6 ; 0.9 (mm) 

Nose raduis (r) 0.4 ; 1.2 ; 1.6 (mm) 

Output parameters Ra ; Fz ; Pm ; Pc ; MRR - 

Cutting procedure Intermittent turning - 

Lubrication Dry - 

2.3 Cutting Power and Material Removal Rate 

The cutting power consumed, Pc in the machining operations, is a very important indicator to follow, because of its 

impact on the final cost of a product [36]. This indicator deserves to be evaluated in order to minimize it in the optimization 

studies. In our case the Pc, is calculated according to Eq. (1) based on the measured value of the Fz. 

𝑃𝑐 =  
𝐹𝑍×𝑉𝐶

60
   (Watt) (1) 
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The material removal rate, MRR is a factor that represents productivity [37]. Which calculated by following equation. 

𝑀𝑅𝑅 =
𝑉𝑐×𝑎𝑝×𝑓×103

60
           (mm3/s) (2) 

3.0 RESULTS AND DISCUSSION  

3.1 Experimental Results 

The results of the tests performed according to the Taguchi L9 design (3^4) are collected and organized in Table 4. 

These results obtained represent the response parameters: Ra, Fz, Pm, Pc, and MRR as a function of the input parameters 

r, Vc, ap, and f. It appears from the results that the Ra varies from 0.825 µm to 1.201 µm. Fz varies between 42.23 N and 

240.45 N; Pm varies from 2900 to 4900 Watt. Pc varies between 168.92 Watt and 1282.40 Watt and finally the MRR 

varies from 96 mm3/s to 768 mm3/s. Figure 3 shows the profile of the cutting forces components in IT. The Fz component 

has been considered in this work because it is preponderant than Fx and Fy. Figure 4 shows the Pm profile during 

intermittent turning. 

Table 4. Experimental results 

 Input Factors Responses 

N° r (mm) 
Vc 

(m/min) 

f 

(mm/rev) 
ap (mm) Ra (µm) Fz (N) Pm (Watt) Pc (Watt) 

MRR 

(mm3/s) 

1 0.4 240 0.08 0.3 0.867 42.23 2900 168.92 96 

2 0.4 280 0.12 0.6 1.034 145.69 3652 679.89 336 

3 0.4 320 0.16 0.9 1.201 240.45 4900 1282.40 768 

4 1.2 240 0.12 0.9 0.934 155.85 3912 623.40 432 

5 1.2 280 0.16 0.3 1.060 142.36 3804 664.35 224 

6 1.2 320 0.08 0.6 0.873 145.25 4120 774.67 256 

7 1.6 240 0.16 0.6 0.938 178.19 3932 712.76 384 

8 1.6 280 0.08 0.9 0.825 162.53 4355 758.47 336 

9 1.6 320 0.12 0.3 0.878 110.62 4100 589.97 192 

 

 

Figure 3. Cutting forces profile in IT 

 

 

Figure 4. Motor power profile in IT 
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3.2 ANOVA of Performances  

ANOVA results of Ra, Fz, Pm and Pc responses are exposed in Table 5. The abbreviations for the values reported in 

Table 4 are, Dof is degrees of freedom, SumSqr is sum of squares, Cont % is percentage contribution of each factor, 

SumSq adjusted is adjusted sum of squares; MS adjusted is adjusted mean squares. F is the Fisher value and p is the 

probability value. If the value of p is less than 0.05, the input parameter is considered significant [38]. Surface roughness 

ANOVA results reveal that the two input parameters f and r possess a great influence with cont% of 57.86% and 29.63% 

respectively, followed by Vc with a cont% of 6.53%, however ap is non-significant with a cont% of 3.46%. These results 

are in agreement with those of D. Carou et al. [39].  ap and f, are the main factors having the greatest influence on Fz, their 

cont% is 51.82% and 33.19% respectively. The Vc factor comes in third place with a cont% of 10.75%, while r is non-

significant P > 0.05 with a cont% of 0.41%.  Gong et al [9] reported similar results, Cui et al. [40], Ni et al [41] indicating 

that the increase of both factors ap and f causes the increase of effort Fz. From the ANOVA of Pm, it is obvious that all the 

input factors are significant; Vc and ap have the major influence, with a cont% of 40.37% and 39.93% respectively. They 

are followed by f and r, which have cont% of 11.37% and of 5.79% respectively. The results of Pc indicate that the factors 

Vc, f and ap are significant, with cont% of 39.50%, 33.45% and 23.51% respectively. However, the r is insignificant with 

a contribution of 0.15%. A comparable study by Safi et al [25] indicated that the factors Vc and ap are the first responsible 

factors on the increase of Pc. For the ANOVA of the MRR, it has not been treated, since it is a parameter calculated by 

equation no. 2 as a function of the input factors. This equation will be exploited in the optimization study.  

Figure 5 summarizes the contribution of each cutting factor on the response parameters, and ANOVA error. It is clear 

from this figure that ap is the factor with the most significant effect on the three parameters Fz, Pm and Pc with contributions 

that exceed the value of 39%, while for the parameter Ra, the factor f has the greatest dominance with a contribution of 

over 57%. Figure 6 plots the main effects of the output parameters Ra, Fz, Pm, and Pc as a function of variations in the 

input factors r, Vc, f, and ap. The factor with the largest slope has the greatest influence on the output parameter under 

study; the figure confirms that ap has a strong signification on Fz, Pm and Pc. Also, Vc and f have impact on all output 

parameters under study. Finally, the factor r particularly has the largest slope on the graph Ra, compared to the other 

output parameters. 

Table 5. ANOVA of Ra, Fz, Pm and Pc 

Source Dof Sum sqr Cont % 
Sumsqr 

adjusted 

MS 

adjusted 
F value p value 

(Ra) 

r 1 0.034304 29.63% 0.034304 0.034304 46.96 0.002 

Vc 1 0.007562 6.53% 0.007561 0.007561 10.35 0.032 

f 1 0.066993 57.86% 0.066993 0.066993 91.70 0.001 

ap 1 0.004004 3.46% 0.004004 0.004004 5.48 0.079 

Error 4 0.002922 2.52% 0.002922 0.000731   

Total 8 0.115784 100.00%     

(Fz) 

r 1 90.8 0.41% 90.8 90.8 0.42 0.551 

Vc 1 2402.0 10.75% 2402.0 2402.0 11.21 0.029 

f 1 7419.5 33.19% 7419.5 7419.5 34.63 0.004 

ap 1 11582.6 51.82% 11582.6 11582.6 54.07 0.002 

Error 4 856.9 3.83% 856.9 214.2   

Total 8 22351.8 100.00%     

(Pm) 

r 1 134979 5.79% 134979 134979 9.14 0.039 

Vc 1 940896 40.37% 940896 940896 63.73 0.001 

f 1 265020 11.37% 265020 265020 17.95 0.013 

ap 1 930628 39.93% 930628 930628 63.04 0.001 

Error 4 59053 2.53% 59053 14763   

Total 8 2330577 100.00%     

(Pc) 

r 1 966 0.15% 966 966 0.18 0.697 

Vc 1 217345 33.45% 217345 217345 39.47 0.003 

f 1 152784 23.51% 152784 152784 27.75 0.006 

ap 1 256694 39.50% 256694 256694 46.62 0.002 

Error 4 22026 3.39% 22026 5507   

Total 8 649815 100.00%     
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(a) (b) 

  

 
 

(c) (d) 

Figure 5. Input factor contribution: (a) Pm, (b) Ra, (c) Fz and (d) Pc 

 

  

(a) (b) 

  

  

(c) (d) 

Figure 6. Main effects graphs for: (a) Pc, (b) Ra, (c) Pm and (d) Fz 

3.3 Response Modelling  

Modeling the output parameters of a technological process presents an important task because it allows prediction 

[42]. Generally, the prediction models found are of significant interest in the optimization stage of cutting conditions [43], 

[44]. In our case study, the relationship between the output responses and the input factors was established by linear 

regression equations, presented as mathematical models Eq. (3) to Eq. (6) with a different R2. 

Ra = 0.4715 - 0.1238 r + 0.000888 Vc + 2.642 f + 0.0861ap (R2 = 97.48) (3) 

   

Fz = -193.2 +146.5 ap + 879 f + 0.500 Vc + 6.37r (R2 = 96.1) (4) 

   

Pm = - 488 + 245.5 r + 9.90 Vc + 5254 f +1313 ap (R2 = 97.47) (5) 
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Pc = - 1508 - 20.8 r + 4.758 Vc + 3989 f + 689 ap (R2 = 96.61) (6) 

 Eq. (3) to Eq. (6) have been exploited to plot the response surfaces 3D as well as the contours for the studied response 

parameters, taking into account the two most influential input parameters, illustrated in Figure 7. In addition, the contour 

plots represent a capital interest because they allow one to estimate the value of the studied output parameter according 

to the combination of the two chosen input factors [45]. 

 

Figure 7. 3D Graphs and contours of Ra, Fz, Pm and Pc 

The studied performances Ra, Fz, Pm, and Pc are represented by graphs of the response surfaces and contours according 

to the two most influential input parameters. The reading of the response surface and contour graphs clearly shows that 

an increase of f causes a degradation of the machined surface quality translated by the increase of the quality index Ra, 

because the increase of feed rate creates helical grooves due to the translational movement of the cutting tool and the 

rotation of the workpiece simultaneously. The larger f is, the wider and deeper the helical grooves became. However, 

increasing r leads to an improvement in surface quality. This is due to the smoothing phenomenon of the machined surface 

that occurs when r increases. As the depth of cut increases, the cutting surface in contact with the tool also increases, 

which increases the force required to cut the material. This results in an increase in Fz. Therefore, an increase in feed rate 

per revolution f results in an increase in cutting force, Fz, this is because f is directly related to the amount of material the 

tool must remove MRR. An increase in f means that the tool must remove more material, which results in an increase in 

cutting force, Fz. It is obvious that an increase in cutting speed leads to an increase in cutting power, Pc. The same way 

the increase of ap causes the increase of Pc because the power is directly related to the cutting force, which is justified in 

our case where the increase of ap induces an increase of Fz, and this increase of Fz generates in parallel an increase of Pc.  
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Moreover, as long as Pc is part of the power of the engine Pm, this imperatively induces that any increase of the power, Pc 

necessarily causes an increase of Pm. 

3.4 Multi-Objective Optimization  

Due to the severe competition and rivalry in the global market between mechanical manufacturing companies. Also, 

to meet the requirements of customers in terms of quality, productivity and final cost of the product, multi-objective 

optimization of performance parameters has become a primary objective of several researchers [45]. In this work, we 

have exploited two approaches; DF approach based on the mathematical models found and GRA which is part of MCDM 

method family. The goal is to propose one or more optimal cutting combinations of cutting parameters according to the 

different desired objectives. We point out here that the comparison between the two approaches DF and GRA was limited 

only to the case where all the output parameters have the same importance. 

3.4.1 Desirability function  

The method is widely used in solving multi-objective optimization problems because of its simplicity and 

effectiveness in putting in the hands of the users the best solutions for choosing the cutting parameters that ensure the 

global objective aimed at.  DF with the value closest to 1 indicates the optimal combination of cutting parameters [46]. It 

is given by the following equations: 

Des(y)={

0 𝑦 < 𝐿𝑜𝑤

(
𝑦−𝐿𝑜𝑤

𝑇𝑎𝑟−𝐿𝑜𝑤
)

𝑤

𝐿𝑜𝑤 ≤ 𝑦 ≤ 𝑇𝑎𝑟

1 𝑦 > 𝑇𝑎𝑟

 (7) 

  

Des(y)={

1 𝑦 < 𝑇𝑎𝑟

(
𝑈𝑝−𝑦

𝑈𝑃−𝑇𝑎𝑟
)

𝑤

𝑇𝑎𝑟 ≤ 𝑦 ≤ 𝑈𝑝

0 𝑦 > 𝑈𝑝

 (8) 

  

Des comb= (𝐷𝑒𝑠1 𝑥 𝐷𝑒𝑠2 𝑥 … 𝑥 𝐷𝑒𝑠𝑖 𝑥 … 𝑥 𝐷𝑒𝑠𝑛)
1

𝑛 =(∏ 𝐷𝑒𝑠𝑖
𝑛
𝑖=1 )

1

𝑛 (9) 

In this study, four optimization cases favoring the choice of optimal cutting conditions during intermittent machining 

of AISI D3 are considered. In Table 6, the constraints of the optimization, the desired objectives as well as the importance 

chosen for the output parameters, which varies from 1 to 5 according to fourth studied cases, are recorded. 

Table 6. Optimization constraints and importance 

Parameters 

Values (V) 

Objective 

Importance 

(p) 

Lower 

(p) 

Upper 

1st 

Case 

2nd 

Case 

3rd 

Case 

4th 

Case 

In
p

u
t 

r 0.4 1.6 

low≤ V ≤ up 

- - - - 

Vc 240 320 - - - - 

f 0.08 0.16 - - - - 

ap 0.3 0.9 - - - - 

O
u

tp
u

t 

Ra 0.825 1.201 Minimize 5 5 5 5 

Fz 42.23 240.45 Minimize 1 1 5 1 

Pm 2900 4900 Minimize 1 5 5 1 

Pc 168.92 1282.40 Minimize 1 1 5 1 

MRR 96 768 Maximize 1 5 5 5 

 

Table 7 shows the final solutions obtained by DF approach. These solutions include the optimal cutting regime, the 

corresponding optimized outputs, and the desirability value for the four optimization cases considered. These found 

solutions meet the manufacturers' objectives during the machining operation of IT parts made of D3 steel. In the first 

optimization case, Ra takes the maximum value of importance of 5; on the other hand, the other parameters take a 

minimum importance of 1. The objective is to have an excellent surface finish that meets the requirements of a customer 

who prefers first-order surface quality [47]. This is a finishing operation, where Ra must be minimized. The optimal 

regime that corresponds to this machining operation is shown in Table 7 with a minimum roughness Ra equal to 0.825 

µm and a desirability of 0.754. The second optimization case considers a maximum importance of (5) attributed to the 

three performance parameters Ra, Pm and MRR, however Fz and Pc take a minimum importance equal to 1. This 

optimization case is interesting in the case of mass production, when the desired objective is to seek a compromise 

between minimizing Ra, Pm and maximizing productivity. The optimized output parameters take the values 0.887 µm, 

3665.08 Watt, and 309.145 mm3/s for Ra, Pm, and MRR respectively, with a desirability of 0.556. For the third 
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optimization case, an importance of 5 is assigned to the five performance parameters in order to minimize Ra, Fz, Pm, Pc 

and maximize the MRR. A trade-off between all outputs is sought in this optimization case. The optimal regime is 

proposed in Table 7 with a found desirability of 0.603. The fourth optimization case aims at maximum productivity and 

surface quality simultaneously [48]. An importance of 5 is assigned to the parameters Ra and MRR, while an importance 

of 1 is assigned to the remaining parameters. This case study is interesting for a customer who is only interested in quality 

and productivity while energy consumption is in last order.  The optimized outputs take the values 0.908 µm and 404.918 

mm3/s for Ra and MRR respectively, with a desirability of 0.560.   

In conclusion, we can say that the choice of an optimal cutting speed in the context of intermittent machining depends 

on the objective. Either the search for maximum surface quality, maximum productivity, minimum energy consumption, 

minimum production cost of machined parts or also, the combination of one, two or all the objectives together [23, 49-

51]. 

Table 7. Selected solutions 

  Input factors Output parameters 
Des 

  r Vc ap f Ra Fz Pm Pc MRR 

1st case 1.6 240 0.57 0.087 0.825 91.50 3359.08 310.94 200.59 0.754 

2nd case 1.6 240 0.71 0.109 0.887 130.99 3665.08 494.12 309.15 0.556 

3rd case 1.6 240 0.64 0.084 0.846 95.98 3376.43 330.74 216.01 0.603 

4th case 1.6 240 0.71 0.143 0.908 168.53 4003.51 670.97 404.92 0.56 

3.4.2 GRA method  

The GRA method belongs to the family of methods MCDM [52], it is suitable for solving multi-objective problems. 

In our case it is applied for the optimization of cutting conditions in intermittent machining with the aim of maximizing 

the MRR and minimizing the performance parameters Ra, Fz, Pm and Pc simultaneously. The GRA method is based on the 

steps illustrated in Figure 8. In this study, the operation of GRA method is performed by setting the same objectives as 

the third optimization case studied by DF, which is interested in optimizing the five performance parameters 

simultaneously with equal importance. Hereunder the GRA steps, the equations used for the calculations, and the 

meanings of each term in the equations [53]. The results obtained are organized in Table 8. 

 

Figure 8. Steps of GRA method 

Step 1: Normalization of results 

  𝑥𝑖(𝑘) =
𝑚𝑎𝑥 (𝑥𝑖

0(𝑘)) − 𝑥𝑖
0(𝑘)

𝑚𝑎𝑥 (𝑥𝑖
0(𝑘)) − 𝑚𝑖𝑛 (𝑥𝑖

0(𝑘))
 Lower is better (10) 

   

   𝑥𝑖(𝑘) =
𝑥𝑖

0(𝑘) − 𝑚𝑖𝑛 (𝑥𝑖
0(𝑘))

𝑚𝑎𝑥 (𝑥𝑖
0(𝑘)) − 𝑚𝑖𝑛 (𝑥𝑖

0(𝑘))
 Greater is better (11) 

where, 𝑥𝑖(𝑘) : normalized value;𝑥𝑖
0(𝑘): result value; 𝑚𝑎𝑥 (𝑥𝑖

0 (𝑘)):max value of (kth) response  𝑥𝑖
0(𝑘) 𝑚𝑖𝑛 (𝑥𝑖

0 (𝑘)): 

min value of (kth) response 𝑥𝑖
0(𝑘). 

Step 2: Grey relational coefficient (GRC) 

𝐺𝑅𝐶 =
∆𝑚𝑖𝑛 + 𝛽∆𝑚𝑎𝑥

∆0𝑖 + 𝛽∆𝑚𝑎𝑥

 (12) 

  

∆0𝑖(𝑘) = ‖𝑥0(𝑘) −𝑥𝑖(𝑘)‖ (13) 
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where, ∆0𝑖 (k): deviation sequence, difference in absolute value between 𝑥0
𝑘 (k) and 𝑥𝑖

𝑘 (k) 

∆𝑚𝑖𝑛: The lowest value of ∆0𝑖 (𝑘);  ∆𝑚𝑎𝑥: the highest value of ∆0𝑖 (𝑘)  

𝛽: Identification coefficient defined in the range 0≤ 𝛽 ≤1 in our case, the value of 𝛽 is 0.5. 

Step 3: Grey relational grade (GRG) 

𝐺𝑅𝐺 =
1

𝑛
∑ 𝐺𝑅𝐶

𝑛

𝑘=1

 (14) 

where, n: is the number of tests. 

Step 4: Selection of the optimum parameters 

Classification of grg values in descending order, the largest grg value has the best range of optimal parameters. 

Step 5: GRA confirmation test 

 𝛾𝑖 = 𝛾𝑚 + ∑ (𝛾𝑖 − 𝛾𝑚)
𝑝

𝑖=1
 (15) 

where,  𝛾𝑚 ∶ is the total mean grg; 𝛾𝑖  : is the mean grg at the optimal level; p: is the number of major variables. 

Table 8 shows the coefficients and ranks of the Gray Relation for each experiment in the Taguchi L9 design. Applying 

the instructions in step 4, it is clearly observed that the trial number 1 has the largest GRG value of 0.830, the optimal 

regime proposed by this method is that of experiment number 1: r = 0.4 mm, Vc = 240 m/min, f = 0.08mm/rev,  

ap = 0.3 mm.  The Figure 9 presents the graph of the main effects of GRG according to the variations of the input factors 

r, Vc, f and ap. Table 9 shows the responses of GRG averages, the factor with largest Delta value has greatest influence 

on GRG.  

Table 8. GRC and GRG results 

No. 

Exp 

GRC 
GRG Rank 

Ra Fz Pm Pc MRR 

1 0.817 1.000 1.000 1.000 0.333 0.830 1 

2 0.474 0.489 0.571 0.521 0.438 0.499 7 

3 0.333 0.333 0.333 0.333 1.000 0.467 9 

4 0.633 0.466 0.497 0.551 0.500 0.529 4 

5 0.444 0.497 0.525 0.529 0.382 0.476 8 

6 0.797 0.490 0.450 0.479 0.396 0.523 5 

7 0.625 0.422 0.492 0.506 0.467 0.502 6 

8 1.000 0.452 0.407 0.486 0.438 0.556 2 

9 0.780 0.592 0.455 0.569 0.368 0.553 3 

 

 

Figure 9. Main effects graphs for Averages GRG 

Table 9. Responses for GRG 
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Parameters 
GRG Delta 

Max-Min 
Rank 

Level 1 Level 2 Level 3 

r 0.5984 0.5091 0.5371 0.0893 4 

Vc 0.6205 0.5102 0.5140 0.1104 3 

f 0.6364 0.5269 0.4815 0.1549 1 

ap 0.6195 0.5077 0.5175 0.1118 2 

3.4.3 Comparison between DF and GRA Optimization 

The results obtained with the two multi-objective optimization methods are summarized in Table 10. The purpose of 

this comparison is to establish the performance of each method and to leave the choice to the industrialists to decide the 

application of this or that approach. It is clear that the DF favors the parameters of surface quality and productivity at the 

same time, where the roughness is minimal, and productivity is maximal Ra =0.846µm and MRR=216.01mm3/s. On the 

other hand, the factors Fz, Pm, and Pc take maximum values. On the other hand, the GRA proposes an optimal regime 

favoring the minimization of cutting force Fz by a percentage of 56.00% compared to the DF, as well as a minimization 

of energy consumption of 14.11% and 48.93% for Pm and Pc respectively. The surface quality value Ra=0.867µm found 

is almost comparable to that found by DF with a small increase of 2.48% only, however the productivity parameter is 

very low MRR=96 mm3/s which is a strong decrease of 55.56% compared to DF. Finally, both methods propose to the 

industrialists two optimal regimes with the same cutting speed Vc = 240 m/min, and almost the same feed rate f=0.08 

mm/rev while the two factors r and ap are totally different. 

Table 10. Results of DF and GRA methods 

 Input factors Output parameters 

 
r 

(mm) 

Vc 

(m/min) 

f 

(mm/rev) 

ap 

(mm) 

Ra 

(µm) 

Fz 

(N) 

Pm 

(Watt) 

Pc 

Watt) 

MRR 

(mm3/s) 

DF 1.6 240 0.084 0.64 0.846 95.98 3376.43 330.74 216.01 

GRA 0.4 240 0.08 0.3 0.867 42.23 2900 168.92 96 

Difference (%) -75.00 0.00 -4.76 -53.05 2.48 -56.00 -14.11 -48.93 -55.56 

3.5 Relationship between Motor Power and Cutting Power   

For the realized experimental design, the change of the cutting conditions for different tests generates different values 

of Pc and Pm. Figure 10 shows the histogram of the recorded values of Pc and Pm. The ratios (𝑃𝑚 𝑃𝑐)⁄   for the 9 tests 

performed are as follows: {17.17; 5.37; 3.82; 6.28;5.73; 5.32; 5.52; 5.74; 6.95}. The power Pc is included in the total 

power consumed by the motor Pm. Figure 11 shows the histogram of the percentages of Pc versus (𝑃𝑚 − 𝑃𝑐) for each test 

performed. 

 

Figure 10. Pm and Pc for each test 
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Figure 11. Rate of Pc and Pm-Pc 

4.0 CONCLUSION 

The present work concerns an experimental study of modeling and multi-objective optimization of cutting parameters 

during intermittent machining of AISI D3 steel using DF and GRA methods. The results of the ANOVA of Ra show that 

the factors f and r have the greatest impact on Ra, while the ANOVA of Fz reveals that ap and f have the greatest influence. 

However, the ANOVA of Pm and Pc clearly shows that Vc and ap are the most dominant factors. In addition, the 

mathematical models found for Ra, Fz, Pm and Pc in the context of intermittent turning are accurate, with high R² ranging 

from 96.1% to 97.48%. These models are very useful for prediction and optimization. 

Multi-objective optimization of cutting conditions by applying the DF method to four well-defined cases, which meet 

industrial requirements, offers the possibility of choosing the optimum solution according to the desired case. The 

comparison of the optimal regimes found by the DF and GRA methods is of great industrial interest, as it enables the 

correct selection of the optimal regimes that correspond to the targeted objectives. The DF method gives the best results 

for minimizing Ra and maximizing MRR. The GRA method, on the other hand, favours minimization of Fz, Pm and Pc, 

while maintaining surface quality very close to that of the DF method. 
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