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ABSTRACT - Incorporating winglets into aircraft has been empirically proven to notably 
improve aerodynamic efficiency by reducing vortex-induced effects at the wingtips. However, 
conducting comprehensive investigations necessitates the exploration of numerous winglet 
factors and value variations. This study pertains to remote control aircraft winglets, focusing 
on manipulating cant angle and offset factors across four distinct values. Two primary 
objectives guide this research: firstly, the maximization Cl/Cdmax, and secondly, the 
minimization Cd₀. The Taguchi experimental design is employed to randomize the variations 
in offset and cant angle values systematically. These variations are then used to generate 
pivotal regression values in the subsequent particle swarm optimization (PSO). The variance 
analysis evaluates the impact of winglet-related variables on each research goal. Additionally, 
the winglet design incorporates the open-source XFLR5 software, an accessible resource for 
aeromodelling clubs in Indonesia. XFLR5 enables the investigation of aerodynamic 
parameters across various angles of incidence and plays a crucial role in this research. The 
results of this study reveal that the Taguchi method yields two distinct combinations of factor 
values, aligning with the two primary research objectives. Conversely, particle swarm 
optimization generates a combination that effectively addresses both objectives. A 
comparative analysis of the winglet factor combinations from Taguchi and PSO underscores 
the greater efficiency of the PSO method in optimizing winglet variations for two distinct 
objectives. 
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1.0 INTRODUCTION 
Aeromodelling is an aircraft testing methodology employing remote control (RC) airplanes or gliders. In the 

Indonesian context, aeromodelling has undergone progressive evolution since 1946, encompassing multifaceted 
endeavors involving aeromodelling aircraft design, fabrication, and testing. The trajectory of aeromodelling advancement 
is intertwined with the emergence of uncrewed aerial vehicles (UAVs), commonly called unmanned aerial vehicles, which 
elicit a dedicated following driven by their pursuit of specific objectives. In an uncrewed vehicle, where the available 
onboard fuel solely constrains endurance, the maximization of flight duration essentially hinges upon configuration 
efficiency. Simultaneously, the adaptability and capacity of UAVs (fixed-wing) can be enhanced to a greater extent by 
improving performance metrics such as top speed, stall threshold, ascent rate, and maneuvering radius. Consequently, 
pursuing research endeavors and formulating specialized protocols, layouts, and methodologies aimed at weight 
reduction, aerodynamic optimization, and overall performance enhancement of fixed-wing UAVs represent pivotal strides 
within unmanned aviation [1]. In aerial dynamics, commercial aircraft, remote-controlled (RC), and unmanned aerial 
vehicle (UAV) aircraft experience congruent force profiles during flight. These forces encompass thrust, drag, lift, and 
weight, collectively influencing the aircraft's in-flight manipulation. Among these forces, lift and drag manifest as 
outcomes of a linear interplay between the aircraft and the surrounding air medium [2]. While lift constitutes a vector 
perpendicular to the prevailing wind direction, drag forces are a vector aligned with the wind flow [3]. The interrelation 
between these two forces engenders a resultant force vector acting upon the aircraft.  

Extensive investigations have been conducted in aerodynamic forces, specifically drag and lift, encompassing 
strategies to mitigate vortex-induced phenomena within aircraft. Among these strategies, integrating winglets at the 
terminus of aircraft wings has emerged as a noteworthy approach. Numerous scholarly investigations have highlighted 
the utilization of winglets on both commercial airplanes and UAVs, showcasing their ability to significantly reduce drag 
and alleviate the formation of trailing vortices at wingtips [4–7]. An initial configuration about the choice of winglet 
characteristics can be embraced to achieve intermediate and elevated levels of precision. Various software tools, including 
XFOIL and XFLR5, can execute two-dimensional (2D) and three-dimensional (3D) evaluations of aerodynamic 
phenomena near wings and bodies. These tools further facilitate direct and inverse procedures for airfoil design within 
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the two-dimensional context and enable holistic design considerations encompassing body structures, the center of gravity 
(CoG), moment of inertia assessments, and stability analyses within the three-dimensional framework [1]. Sethi and 
Ahlawat [8] contend that XFLR5 software is utilized to derive preliminary static stability parameter estimations, providing 
an informed basis for evaluating the aircraft's performance and stability characteristics. According to Adawy et al. [9], 
XFLR5 represents a computational tool intended to analyze individual airfoil elements. Along the same line, Kontogiannis 
et al. [10] emphasized the critical role of XFOIL and XFLR5 codes in refining grid selection for computational fluid 
dynamics (CFD), enhancing the precision of the three-dimensional models used in the detailed design phase.  

Various geometries of winglet designs have been investigated in prior research to attain an optimal geometric 
configuration. These investigations encompass a spectrum of methodologies, ranging from numerical analysis to 
incorporating machine learning and metaheuristic techniques, to achieve the desired objectives. Whitcomb [6] explored 
the design of upper and lower winglets with wind tunnel method. The design parameters for the upper winglet encompass 
spanwise load distribution, height, planform, airfoil selection, angles of incidence and twist, as well as cant angle or 
dihedral. The outcomes revealed a correlation between the incremental enhancement in overall performance facilitated 
by winglets and the angles of incidence. Panagiotou et al. [4, 5, 11] employed computational fluid dynamics (CFD) in 
their numerical investigation to scrutinize alterations in winglet configuration geometry. The study encompassed a 
comprehensive assessment of diverse parameters, including height, blending radius, winglet airfoil profile, taper ratio, 
and cant angle, to discern their respective impacts on the lift-to-drag ratio and stall characteristics. Moreover, Guerrero et 
al. [12] illustrated incorporating cant angle and sweep angle within winglet design using CFD software for analysis. The 
winglet geometry exerts a discernible influence on enhancing aerodynamic performance across various angles of attack. 

Based on prior studies, many geometric configurations for winglet design have been selected to pursue specific 
objectives. Moreover, the objectives typically encompass a multi-objective approach rather than being solely directed 
toward a single objective. The selection of an appropriate configuration aligned with the intended objectives necessitates 
the application of meticulous methodologies. Among these methodologies, one prevalent approach involves utilizing 
optimization techniques, such as the Taguchi method, rooted in statistical principles or metaheuristic algorithms founded 
upon artificial intelligence principles. The methodology employed for implementing optimization techniques involves 
constraining the design domain, investigating discrete subsets encompassing the various factors and levels of interest, and 
ensuring the preservation of data precision devoid of extraneous disturbances. This confluence can be achieved by 
employing Experimental Design (DOE), a technique rooted in statistical science, to forge an efficacious design domain 
ahead of the empirical inquiry. The term "experiment" denotes various forms of optimization undertaken experimentally 
or computationally within real-world conditions. The utilization of DOE has been extensively embraced in aeronautical 
studies, exemplified by endeavors such as optimizing multidisciplinary aircraft wing design [13].  

Using the Taguchi experimental design, Kapsalis et al. [13] explored the Blended-Wing-Body (BWB) configuration 
using CFD. Using Taguchi methods resulted in a significant reduction of approximately 70% in the requisite number of 
computational analyses compared to a comprehensive full factorial approach. This outcome underscores the potential to 
uphold the accuracy of computational modeling while concurrently achieving substantial resource economization. 
Atencio et al. [14] employed Taguchi's orthogonal arrays to discern a diminished set of experiments for ascertaining 
optimal UAV flight parameter values while upholding the statistical robustness of experimental outcomes. Using 
Taguchi's arrays, the total number of requisite experiments to ascertain optimal flight parameters (a sum of 25) was 
substantially curtailed when juxtaposed with alternative experiment design methodologies. 

The application of multidisciplinary optimization to RC plane wing design has demonstrated successful outcomes 
through integrating experimental design and hybrid machine learning - metaheuristic techniques, as evidenced by several 
investigations [15–18]. This paradigm has served as a benchmark for scrutinizing alternative algorithms within aviation. 
Notably, Particle Swarm Optimization (PSO) is an exemplar among optimization approaches, deriving inspiration from 
natural behaviors and characterized by its simplicity and comprehensibility. Particle Swarm Optimization (PSO) 
harnesses the communal patterns seen in animal groups, similar to the coordinated movements of fish schools or bird 
flocks. PSO algorithm is founded upon the emulation of these group behaviors. Its notable advantages encompass rapid 
convergence, a proficient exploration mechanism, reduced reliance on initial conditions, computational simplicity, and 
ease of implementation. Abnous et al. [19] explored PSO to design a blended wing body for developing the feasibility or 
performance of blended wing body-Integrated Transitioning UAV. The results state that PSO can achieve the higher 
performance than baseline designs. PSO can be applied in airfoil design for UAVs [20–23], and PSO proved that this 
method can solve the aerodynamics role model for UAVs. PSO also can solve dynamic stability for UAVs. As same as 
Abnous et al, Bashir et al [24] investigated aerodynamic and performance camber adaptive winglet with PSO; this study 
explores the utilization of optimization methodologies. It juxtaposes diverse winglet configurations, elucidating that 
modifying winglet geometries during flight operations can yield improvements in aircraft performance by mitigating 
aerodynamic drag and reducing fuel consumption. Tao et al. [25] utilized PSO to optimize wing configurations at critical 
drag divergence Mach Numbers. Their study results demonstrate a dual impact of PSO: it not only significantly reduces 
drag coefficients for both the airfoil and wing during cruise Mach numbers but also efficiently mitigates the increase in 
drag as the Mach number rises, extending up to the drag divergence Mach Number threshold. The literature review reveals 
that PSO proves advantageous in optimizing aircraft design, including its utility for optimizing winglet design [24, 26–
28]. 
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Traditionally, RC aircraft design, notably winglet design, has relied on a trial-and-error approach. Furthermore, 
optimal results with reduced stochasticity can be achieved by judicious choice of suitable parameters. This manuscript 
introduces a straightforward and effective metaheuristic algorithm, PSO, to mitigate these challenges. This approach is 
specifically tailored for scenarios characterized by minimal computational demands, thereby rendering it suitable for the 
computation of aerodynamic coefficients. Adopting this technique offers valuable support to the aeromodelling 
community engaged in RC airplane design by providing a cost-effective means for advancing their design endeavors. 

In this contemporary investigation, Taguchi's experimental design methodology and variance analysis (ANOVA) were 
employed to construct a regression equation, which was utilized to identify optimal PSO parameters within the context 
of winglet design optimization. The discretized offset winglet and cant angle values were subjected to PSO-optimized 
parameters. The utilization of PSO is employed to address multi-objective challenges that lie beyond the capabilities of 
the Taguchi method. 

2.0 METHODS AND MATERIALS 
This study uses four steps in the optimization design. These methods are the determination of the DOE of the winglet 

factor and retrieving response data with XFLR5, processing response data with Taguchi, determining the objective 
function for optimization, and optimizing PSO using predetermined parameters. 

2.1 Winglet Geometry Design with XFLR5 

This study uses a fixed-wing RC aircraft with an airfoil Cal2263m [29], root chord wing of 189 mm, tip chord wing 
of 136 mm, and span of 518 mm [30]. The winglet geometry under review (Figure 1) is winglet offset and cant angle with 
winglet chord tip measuring 0.21Ct (tip chord) [6] and winglet height 0.5Ct (tip chord). Cant angle was simulated by 
incorporating a minor curvature radius at the junction between the winglet and the wingtip, ensuring a seamless transition 
between the two components. Furthermore, an examination was conducted to assess the impact of the winglet's offset on 
the wing's aerodynamic performance. Geometry design uses XFLR5 assistance by choosing winglet factors in the form 
of offset and cant angle because XFLR5 has limitations in making winglet designs [31]. XFLR5 uses XFOIL data in two 
dimensions to calculate lift, drag, pitching moment, and pressure coefficient [32]. XFLR5 only analyzes the wings, not 
the complete fuselage or tail of the aircraft, so that it tends to be faster and cheaper, and the purpose of making aircraft 
design is effective [33].  

 
Figure 1. Variation of winglet offset with cant angle 50°: (a) offset 0 mm, (b) offset 50 mm, (c) offset 68 mm, and  

(d) offset 100 mm 

XFLR5 analysis in this study uses polar type 2 (fixed lift) with ring vortex analysis (VLM2), the number of panels is 
3519, the angle of incidence is -2° to 8° (increment 2°), and the angle of incidence exceeds 8° in this problem cannot be 
calculated by XFLR5, because the VLM method is an inviscid method that is not able to predict stalls [34]. The observed 
output values are the drag force when the angle of attack is 0° (Cd₀) and the maximum lifting force (Clmax). 

2.2 Winglet Objective Function 

XFLR5 simulation produces aerodynamic performance using the linear vortex lattice method (VLM). VLM is is an 
approach for modeling inviscid flow. It is highly suitable for various wing configurations, encompassing wings with 
sweep, low aspect ratios, high dihedral angles, and the incorporation of winglets. VLM works by modelling wing 
perturbations on some of the vortices to the plane [34]. Lifting force and lift coefficient according to  Deperrois [34] is as 
follows: 

𝐹𝐹 = 𝜌𝜌𝜌𝜌 × 𝛤𝛤 (1) 

In Eq. (1), F= force of lift, ρ= density of fluid, and v= velocity of fluid. While the lift coefficient is determined as follows: 
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𝐶𝐶𝐿𝐿 =
1

𝜌𝜌𝜌𝜌𝑣𝑣2
� 𝐹𝐹𝑤𝑤𝑤𝑤

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 (2) 

In Eq. (2), Fwz is a projection in the vertical wind direction, and S is the number of panel areas, for example, the surface 
area of the wing design. In the meantime, calculating the drag force involves the summation of the induced drag coefficient 
and the drag coefficient when the angle of incidence is at zero degrees using Eqs. (3) and (4) [32], AR for aspect ratio, e 
is the Oswald number. 

𝐶𝐶𝐷𝐷 = 𝐶𝐶𝐷𝐷0 +
𝐶𝐶𝐿𝐿2

𝜋𝜋.𝐴𝐴𝐴𝐴. 𝑒𝑒
 (3) 

  

𝐶𝐶𝐷𝐷𝐷𝐷 =
𝐶𝐶𝐿𝐿2

𝜋𝜋.𝐴𝐴𝐴𝐴. 𝑒𝑒
 (4) 

From Eqs. (1)-(4), an aircraft's most crucial aerodynamic performance depends on the lift and drag force. Various 
geometries of aircraft, especially winglet design, are used to reach the optimum aircraft performance. In this case, the 
multi-objective of winglet design can solve with PSO algorithm, and the simple objective function can follow: 

𝑓𝑓(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒 𝐶𝐶𝐶𝐶0 − 𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒 𝐶𝐶𝐶𝐶/𝐶𝐶𝐶𝐶𝑚𝑚𝑝𝑝𝑚𝑚 (5) 

with the limitation of the winglet design geometry, namely 

0 𝑚𝑚𝑚𝑚 ≤ 𝑜𝑜𝑓𝑓𝑓𝑓𝑜𝑜𝑒𝑒𝑜𝑜 𝑤𝑤𝑚𝑚𝑚𝑚𝑤𝑤𝐶𝐶𝑒𝑒𝑜𝑜 ≤ 100 𝑚𝑚𝑚𝑚 (6) 
  

50𝑜𝑜 ≤ 𝑐𝑐𝑚𝑚𝑚𝑚𝑜𝑜 𝑚𝑚𝑚𝑚𝑤𝑤𝐶𝐶𝑒𝑒 ≤ 90𝑜𝑜 (7) 

The imposition of constraints on winglet geometry draws from the capabilities of XFLR5 in winglet design. A winglet 
offset of 0 mm denotes that, within the winglet design, no alteration applies to the value of the winglet offset; it is 
generated directly by the program itself (see Figure 2). Furthermore, the boundary employs integer values (Eqs. (6) and 
(7)) to facilitate a streamlined manufacturing process.  

 
Figure 2. Winglet offset (0 mm) in XFLR5  

2.3 Taguchi Method 

The Taguchi method improves product quality, time, and resources and minimizes costs. This method makes the 
product robust from the noise factor. The primary steps in this method are the planning stage, the implementation step, 
and the analysis step [35]. The experimental layout presented by Taguchi employs orthogonal arrays for structuring the 
process's influential parameters and varying levels. In contrast to the exhaustive assessment of all conceivable 
combinations, as seen in the full factorial design, the Taguchi method evaluates sets of combinations. This approach 
facilitates the acquisition of requisite data for ascertaining the foremost factors influencing product quality with a reduced 
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number of experimental runs. Consequently, this approach conserves time and resources while comprehensively 
understanding the factors' impact [36]. 

 The preparatory phase of this investigation involves identifying levels for the winglet factor (Table 1) and selecting 
an appropriate orthogonal matrix. The decision regarding the orthogonal matrix stems from assessing the degrees of 
freedom associated with the winglet factor facilitated by the Minitab 16 software. Using Minitab 16, the L16(42) orthogonal 
array from Table 2 is chosen, signifying that the simulation experiment will be conducted 16 times without replication. 
Following the initial planning phase, the research progresses to the implementation stage, which involves the examination 
of factor combinations through experimentation using XFLR5. The experimental tests yield response variables, 
specifically Cl/Cdmax and Cd₀. Subsequently, the analysis phase is undertaken, where the Minitab 16 software is employed 
to calculate the amalgamation of factors and corresponding responses, culminating in the computation of the signal-to-
noise (S/N) ratio. This ratio is pivotal in discerning the influence of both factors and their respective levels on the response 
variables. Notably, there exist three distinct categories of S/N ratios, each contingent upon the number of experimental 
repetitions, denoted as [35]: 

i) Small is best 

𝜌𝜌
𝑁𝑁� = −10𝐶𝐶𝑜𝑜𝑤𝑤 �

1
𝑚𝑚
�𝑌𝑌𝐷𝐷2
𝑟𝑟

𝐷𝐷=1

� (8) 

ii) Nominal is best 
𝜌𝜌
𝑁𝑁� = −10𝐶𝐶𝑜𝑜𝑤𝑤𝜌𝜌𝑝𝑝 (9) 

  
𝜌𝜌
𝑁𝑁� = −10𝐶𝐶𝑜𝑜𝑤𝑤 �

𝜌𝜌𝑚𝑚 − 𝜌𝜌𝑝𝑝
𝑚𝑚𝜌𝜌𝑝𝑝

� (10) 

iii) Larger is best 

𝜌𝜌
𝑁𝑁� = −10𝐶𝐶𝑜𝑜𝑤𝑤 �

1
𝑚𝑚
�

1
𝑌𝑌𝐷𝐷2

𝑟𝑟

𝐷𝐷=1

� (11) 

This study uses two types of S/N ratio, namely lower is better for Cd₀ response and bigger is better for Cl/Cdmax 
response. Furthermore, the method of variance analysis was employed to analyze the results, determine the performance 
qualifications for the optimal combination, and observe the effect of factors on the response [13].  

Table 1. Factors and levels of the winglet 

Factor 
Level 

1 2 3 4 
Offset winglet (mm) 0 20 68 100 
Cant angle (°) 50 60 70 90 

 

Table 2. The number of simulations with orthogonal array L16(42) 

No 
Factor 

Offset winglet 
(mm) 

Cant angle 
(°) 

1 0 50 
2 0 60 
3 0 70 
4 0 90 
5 20 50 
6 20 60 
7 20 70 
8 20 90 
9 68 50 

10 68 60 
11 68 70 
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Table 2. (cont.) 

No 
Factor 

Offset winglet 
(mm) 

Cant angle 
(°) 

12 68 90 
13 100 50 
14 100 60 
15 100 70 
16 100 90 

2.4 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) represents an algorithm that works by imitating a flock of fish or a flock of birds. 
Reynolds experimented with the beauty of the choreography of flocks of birds in flight, while Hepner and Grenander 
studied the flocks to find ground rules regarding the probability of multiple birds gathering together, changing direction, 
and scattering [37]. Parsopoulos and Vrahatis [38] wrote that the early pioneers of this algorithm were social behaviour 
in observing flocks of birds, matching the velocity of the closest birds and acceleration based on the distance between 
birds was the primary basis in the flock foraging (Table 3). The mathematical model for PSO is based on a population of 
algorithms called swarms, while the individuals of the swarms are called particles. Swarm is determined by [38]: 

𝜌𝜌𝑤𝑤 = {𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑝𝑝}, (12) 

np particles (selected individual candidates) are determined as: 

𝑥𝑥𝐷𝐷 = (𝑥𝑥𝐷𝐷1, 𝑥𝑥𝐷𝐷2, … . , 𝑥𝑥𝐷𝐷𝑝𝑝)𝑇𝑇 ∈ 𝐴𝐴𝑝𝑝,      𝑚𝑚 = 1, 2, … . ,𝑚𝑚𝑝𝑝 (13) 

np is a predetermined algorithm tuning parameter. The objective function f(x) is calculated assuming it can apply to all 
particles in the member Ap thus ensuring that each particle possesses a distinct function value, 

𝑓𝑓𝐷𝐷 = 𝑓𝑓(𝑥𝑥)𝐷𝐷 ∈ 𝑌𝑌𝑝𝑝 (14) 

The particles are assumed to be able to move along the search region, Ap. It allows an adjustment of the particle position, 
which is called the velocity and is shown as: 

𝑣𝑣𝐷𝐷 = (𝑣𝑣𝐷𝐷1, 𝑣𝑣𝐷𝐷2, … . , 𝑣𝑣𝐷𝐷𝑝𝑝)𝑇𝑇 ∈ 𝐴𝐴𝑝𝑝,      𝑚𝑚 = 1, 2, … . ,𝑚𝑚𝑝𝑝 (15) 

Speed adjustments are executed using information from the preceding step, ensuring that each step conserves memory 
and yields the optimal position during the search process. 

𝑃𝑃 = {𝑝𝑝1, 𝑝𝑝2, … . , 𝑝𝑝𝑝𝑝}, (16) 

Consisting of, 

𝑝𝑝𝐷𝐷 = (𝑝𝑝𝐷𝐷1, 𝑝𝑝𝐷𝐷2, … . , 𝑝𝑝𝐷𝐷𝑝𝑝)𝑇𝑇 ∈ 𝐴𝐴,      𝑚𝑚 = 1, 2, … . ,𝑚𝑚𝑝𝑝  (17) 

The position of the particles is determined: 

𝑝𝑝𝐷𝐷�𝑜𝑜𝑝𝑝� = 𝑓𝑓𝐷𝐷(𝑜𝑜𝑝𝑝)𝑡𝑡𝑝𝑝
𝑝𝑝𝑟𝑟𝑎𝑎𝑚𝑚𝐷𝐷𝑝𝑝  (18) 

  
𝑝𝑝𝑎𝑎�𝑜𝑜𝑝𝑝� = 𝑓𝑓(𝑃𝑃𝐷𝐷(𝑜𝑜𝑝𝑝))𝑡𝑡𝑝𝑝

𝑝𝑝𝑟𝑟𝑎𝑎𝑚𝑚𝐷𝐷𝑝𝑝  (19) 

where, tp is the number of iterations and g is the index of the best position with the smallest function value in P. 

From Eqs. (12)-(19), the PSO equation is pioneered by Eberhart and Kennedy’s formulas (1995) [38]: 

𝑣𝑣𝐷𝐷𝑖𝑖�𝑜𝑜𝑝𝑝 + 1� = 𝑣𝑣𝐷𝐷𝑖𝑖�𝑜𝑜𝑝𝑝� + 𝑐𝑐1𝑟𝑟1 �𝑝𝑝𝐷𝐷𝑖𝑖�𝑜𝑜𝑝𝑝� − 𝑥𝑥𝐷𝐷𝑖𝑖�𝑜𝑜𝑝𝑝�� + 𝑐𝑐2𝑟𝑟2 �𝑝𝑝𝑎𝑎𝑖𝑖(𝑣𝑣) − 𝑥𝑥𝐷𝐷𝑖𝑖�𝑜𝑜𝑝𝑝�� (20) 
  

𝑥𝑥𝐷𝐷𝑖𝑖�𝑜𝑜𝑝𝑝 + 1� = 𝑥𝑥𝐷𝐷𝑖𝑖�𝑜𝑜𝑝𝑝� + 𝑣𝑣𝐷𝐷𝑖𝑖�𝑜𝑜𝑝𝑝 + 1� (21) 

with i=1,2,….,np, j=1,2,…..,np. r1 and r2 are random numbers [0, 1], c1 and c2 are weighting factors, called the cognitive 
and social parameter.  
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Table 3. Pseudocode of PSO [38] 
Input Particles; swarm; best of position 

1 Begin t: 0 
2 Initialize the population of a swarm and best position 
3 Evaluate swarm and best position and set global best of position index 
4 Whilst (termination condition has yet to be satisfied) 
5 Restore swarm Eqs.(20) and (21) 
6 Evaluate swarm 
7 Update best position redefines global best 
8 Set t: t+1 
9 End Whilst 
10 Print best position found 

Maurice Clerc [39]demonstrated the use of the constriction factor, k, which makes PSO more convergent. The 
constriction factor is written as: 

𝜌𝜌𝐷𝐷𝑖𝑖�𝑜𝑜𝑝𝑝 + 1� = 𝑘𝑘𝜌𝜌𝐷𝐷𝑖𝑖�𝑜𝑜𝑝𝑝� + 𝑐𝑐1𝐴𝐴1 �𝑝𝑝𝑎𝑎�𝑜𝑜𝑝𝑝� − 𝑥𝑥𝐷𝐷𝑖𝑖�𝑜𝑜𝑝𝑝�� + 𝑐𝑐2𝐴𝐴2 �𝐺𝐺𝐺𝐺𝑒𝑒𝑜𝑜𝑜𝑜�𝑜𝑜𝑝𝑝� − 𝑥𝑥𝐷𝐷𝑖𝑖�𝑜𝑜𝑝𝑝��) (22) 
  

𝑘𝑘 =
2

�2 − ∅− �∅2 − 4∅�
 (23) 

∅ is a function with components c1 and c2, ∅ = 𝑐𝑐1 + 𝑐𝑐2, and ∅ > 4.0. ∅ for good results is in the range of 4.1 < ∅ < 4.2 
[39]. The inertia weight uses the following equation: 

𝑤𝑤𝑚𝑚 = 𝑤𝑤𝑚𝑚𝐷𝐷𝑝𝑝 +
(𝑤𝑤𝑚𝑚𝑝𝑝𝑚𝑚 − 𝑤𝑤𝑚𝑚𝐷𝐷𝑝𝑝)(𝑜𝑜𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑜𝑜𝑝𝑝)

𝑜𝑜𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

 (24) 

The inertial weight (w) is used as the PSO parameter because w is created to guard against particle search and 
exploitation. It is done because a small w is more easily trapped in the local optimum. The inertial weight that can make 
the particles find the global optimum is 0.8 to 1.2 [39]. While for c1 and c2 used in this study is 2.05, this value is based 
on research from Lee & Tuegeh (2020), which produces a good solution with the following velocity equation: 

𝜌𝜌𝐷𝐷𝑖𝑖�𝑜𝑜𝑝𝑝 + 1� = 𝑘𝑘(𝑤𝑤𝑚𝑚𝜌𝜌𝐷𝐷𝑖𝑖�𝑜𝑜𝑝𝑝� + 𝑐𝑐1𝐴𝐴1 �𝑝𝑝𝑎𝑎�𝑜𝑜𝑝𝑝� − 𝑥𝑥𝐷𝐷𝑖𝑖�𝑜𝑜𝑝𝑝�� + 𝑐𝑐2𝐴𝐴2 �𝐺𝐺𝐺𝐺𝑒𝑒𝑜𝑜𝑜𝑜�𝑜𝑜𝑝𝑝� − 𝑥𝑥𝐷𝐷𝑖𝑖�𝑜𝑜𝑝𝑝��) (25) 

3.0 RESULTS AND DISCUSSION 
3.1 Taguchi for Aerodynamic Performance 

The performance outcomes derived from the DOE, as presented in Table 1, were acquired through the utilization of 
the XFLR5 software. For each DOE configuration, data were meticulously collected at six distinct angles of attack, 
spanning from -2° to 8° with a consistent 2° increment. The ensuing results emanate from the judicious selection of the 
maximum Cl/Cdmax value, alongside the minimum Cd₀ value, from this comprehensive dataset. Subsequently, the 
response (aerodynamic performance) was reevaluated using the Taguchi robust parameter methodology. In the initial 
phase, Table 4 presents the computed results for Cl/Cdmax and Cd₀ responses, which Taguchi analyzed to derive the Signal-
to-Noise (S/N) ratios. The S/N ratio for Cl/Cdmax is determined using Eq. (11), while the S/N ratio for Cd₀ is computed 
through Equation 8. Aerodynamic performance is assessed based on the bigger is better criterion for Cl/Cdmax and the 
smaller is better criterion for Cd₀.  

Table 4. Aerodynamic performance results and S/N ratio 

No 
Response S/N ratio 

Cl/Cdmax Cd₀ Cl/Cdmax Cd₀ 
1 16.6273 0.01855 24.41643 34.63312 
2 16.5415 0.01851 24.3715 34.65187 
3 16.4495 0.01846 24.32305 34.67537 
4 16.2625 0.01835 24.22375 34.72728 
5 16.6242 0.01864 24.41482 34.59108 
6 16.5375 0.01859 24.3694 34.61441 
7 16.4436 0.01855 24.31994 34.63312 
8 16.2464 0.01844 24.21514 34.68478 
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Table 4. (cont.) 

No 
Response S/N ratio 

Cl/Cdmax Cd₀ Cl/Cdmax Cd₀ 
9 16.6072 0.01879 24.40593 34.52146 

10 16.519 0.01875 24.35968 34.53997 
11 16.215 0.01871 24.30826 34.55852 
12 16.2087 0.01862 24.19496 34.60041 
13 16.624 0.01879 24.41471 34.52146 
14 16.5358 0.01874 24.3685 34.54461 
15 16.4368 0.0187 24.31635 34.56317 
16 16.2197 0.0186 24.20086 34.60974 

Tables 5 and 6 present the optimal levels and ranking based on the mean responses. Table 5 shows the influence of 
the cant angle on the Cl/Cdmax ratio and the best value (*) at level 1 for all factors. Notably, the cant angle has a more 
pronounced effect on Cl/Cdmax, contributing to enhanced lift performance without a concurrent increase in parasite drag. 
This phenomenon is ascribed to the ability of the cant angle to promote a more even pressure distribution across both the 
upper and lower surfaces of the wing, thus influencing aerodynamic performance. Additionally, the cant angle aids in the 
mitigation of trailing vortex formation at the wingtip, increasing the lift coefficient. 

Table 5. Means of responses for Cl/Cdmax 
Level Offset Cant Angle 

1 16.47* 16.62* 
2 16.46 16.53 
3 16.44 16.44 
4 16.45 16.23 

Delta 0.03 0.39 
Rank 2 1 

* Best level 

Table 6 reveals the influence of offset on Cd₀, with the optimal value (ª) observed at level 3 and the optimal cant angle 
at level 1. Offset can mitigate parasite drag in RC airplanes by influencing airflow around the wing. Introducing an offset 
in a winglet can reduce frictional drag as it alters and redistributes the airflow patterns along the wing surface. This 
alteration diminishes frictional drag, a significant contributor to parasitic drag. 

Table 6. Means of responses for Cd₀ 
Level Offset Cant Angle 

1 0.01847 0.01869* 
2 0.01855 0.01865 
3 0.01872* 0.01861 
4 0.01871 0.01850 

Delta 0.00025 0.00019 
Rank 1 2 

* Best level 

While considering Figures 3 and 4, we observe the S/N ratio plots corresponding to each response variable. In its 
traditional application, it is important to highlight that the Taguchi method is intended for optimizing individual responses 
rather than simultaneously optimizing multiple responses. Figure 3 depicts the optimal outcomes of Taguchi's approach 
for the bigger is better Cl/Cdmax criterion, which is associated with offset (level 1) and cant angle (level 1). In contrast, 
Figure 4 illustrates Taguchi's optimal results for the smaller is better Cd₀ criterion, where the optimal settings feature 
offset (level 3) and cant angle (level 1).  
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Figure 3. Graph of S/N ratio for Cl/Cdmax 

 

 
Figure 4. Graph of S/N ratio for Cd0 

The second stage involves conducting ANOVA calculations for each response variable. This stage is conducted to 
assess the influence of factors on individual responses. The results of the ANOVA for each response are presented in 
Table 7 - 8, and the significance of each factor's impact can be determined by examining the resulting P-values. A factor 
is considered influential when the P-value is less than 0.05. Table 7-8 reveals that the P-values obtained for both the 
Cl/Cdmax and Cd₀ responses are less than 0.05 for both factors. It can be concluded that the offset and cant angle factors 
significantly affect both responses. 

Table 7. ANOVA results for Cl/Cdmax 
Source DF Adj SS Adj MS F-Value P-Value 
Offset 3 0.002150 0.000717 10.06 0.003 
Cant 3 0.330337 0.110112 1544.83 0.000 
Error 9 0.000641 0.000071   

Total 15 0.333129    

 

Table 8. ANOVA results for Cd0 
Source DF Adj SS Adj MS F-Value P-Value 
Offset 3 0.000000 0.000000 1310.91 0.000 
Cant 3 0.000000 0.000000 584.26 0.000 
Error 9 0.000000 0.000000   

Total 15 0.000000    
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Due to the limitations of the Taguchi method, this study incorporates an additional approach to calculate multiple 
responses to optimize the RC airplane's performance. PSO is employed as a complementary method to enhance the 
robustness of the Taguchi results. Taguchi's capabilities include generating a regression equation, the objective function 
for PSO optimization (as shown in Eqs. (26) and (27)). The objective function (Eq. (28)) for PSO can be subtitute Eqs. 
(26) and (27) in Eq.(5).  

𝐶𝐶𝐶𝐶/𝐶𝐶𝐶𝐶𝑚𝑚𝑝𝑝𝑚𝑚 = 17.1219 − 0.000212 𝑜𝑜𝑓𝑓𝑓𝑓𝑜𝑜𝑒𝑒𝑜𝑜 − 0.009709 𝑐𝑐𝑚𝑚𝑚𝑚𝑜𝑜 𝑚𝑚𝑚𝑚𝑤𝑤𝐶𝐶𝑒𝑒 (26) 
  

𝐶𝐶𝐶𝐶0 = 0.018814 + 0.000003 𝑜𝑜𝑓𝑓𝑓𝑓𝑜𝑜𝑒𝑒𝑜𝑜 − 0.000005 𝑐𝑐𝑚𝑚𝑚𝑚𝑜𝑜 𝑚𝑚𝑚𝑚𝑤𝑤𝐶𝐶𝑒𝑒 (27) 
  

𝑓𝑓(𝑥𝑥) = (0.018814 + 0.000003 𝑜𝑜𝑓𝑓𝑓𝑓𝑜𝑜𝑒𝑒𝑜𝑜 − 0.000005 𝑐𝑐𝑚𝑚𝑚𝑚𝑜𝑜 𝑚𝑚𝑚𝑚𝑤𝑤𝐶𝐶𝑒𝑒) − (17.1219 − 0.000212 𝑜𝑜𝑓𝑓𝑓𝑓𝑜𝑜𝑒𝑒𝑜𝑜 −
0.009709 𝑐𝑐𝑚𝑚𝑚𝑚𝑜𝑜 𝑚𝑚𝑚𝑚𝑤𝑤𝐶𝐶𝑒𝑒 ) (28) 

3.2 PSO for Aerodynamic Performance 

PSO simulation within this investigation is guided by a predefined set of parameters, including a swarm size of 1500, 
lower and upper bounds for inertia weight (wmin=0.8 and wmax=1.2), acceleration coefficients (c1 and c2), both set at 2.05, 
a constriction parameter (k) of 0.38 and a maximum  iteration count of 100. The rationale for selecting wmin and wmax in 
order of 0.8 and 1.2, respectively, arises from inclination of particles to engage in global exploration, thereby achieving 
a balance between global and local exploration for optimal solutions [39]. The choice of c1 and c2 values as 2.05 is 
motivated by their efficacy in guiding the solution toward favorable outcomes [39]. The parameter values for swarm size 
and iteration count were determined through trial and error, leading to stability within these values. This study executed 
the PSO algorithm by iteratively testing various PSO parameters until a robust convergence was achieved. This 
convergence was monitored by evaluating the objective function values at each iteration (see Figure 5). The best fitness 
function value obtained from the PSO optimization results is -16.6179. Figure 5 also illustrates that the fitness function 
value converges steadily toward the target point from the 70th iteration onwards. The stability of this convergence pattern 
is attributed to the incorporation of inertia in the particle movement process. The convergence depicted in Figure 5 can 
also indicate that the PSO algorithm effectively addresses the scenarios considered in this study, ultimately leading to 
optimal values.  

 
Figure 5. PSO fitness function 

Furthermore, in addition to optimizing the fitness function, PSO generates factors identified as the top candidates in 
this study (Table 9). Notably, Table 9 reveals that these factors derived from the selected PSO results align with the order 
specified in the Design of Experiments (DOE) presented in Table 2. At the same time, the corresponding response values 
closely resemble those obtained from XFLR5 simulations. 

Table 9. Comparison of  XFLR5 and PSO results 
 Factor Response 

 Offset 
(mm) 

Cant 
Angle (°) Cl/Cdmax Cd₀ 

XFLR5 0 50 16.6237 0.018554 
PSO   16.63645 0.018564 

Error (%)   0.0548 0.0538 
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The final step involves a comparison by substituting the results derived from PSO and Taguchi into Eqs. (26) and (27. 
This step is undertaken to assess which methods exhibit the capability to yield optimal values per the desired objectives. 
The results of this comparison are presented in Table 10. The table reveals that Taguchi yields two optimal outcomes 
when applied to two objectives, whereas PSO demonstrates its ability to produce a single optimal outcome that 
encompasses two distinct objectives. Specifically, the results indicate that Taguchi's optimal values of offset at 68 mm 
and cant angle at 50° generate responses that do not surpass the results obtained through PSO. Therefore, based on the 
findings presented in Table 10, it can be concluded that PSO outperforms Taguchi in optimizing RC aircraft parameters 
with dual objectives simultaneously. 

Table 10. Comparison of Taguchi – PSO results 
 Factor Response 

 Offset 
(mm) 

Cant Angle 
(°) Cl/Cdmax Cd₀ 

Taguchi 
0 50 16.63645 0.018564 

68 50 16.622034 0.018768 
PSO 0 50 16.63645 0.018564 

4.0 CONCLUSION 
In this study, the winglet design of an RC aeroplane was examined by varying offset and cant angle across four distinct 

levels. This study employed a combination of the Taguchi method for experimental design and the PSO algorithm for 
factor optimization. Performance metrics, including Cl/Cdmax and Cd₀, were calculated, and operational parameters were 
fine-tuned for optimization. The research findings indicate that when focused on maximizing Cl/Cdmax, the Taguchi 
method yielded results closely aligned with those obtained using the PSO algorithm. However, in the case of minimizing 
Cd₀, Taguchi exhibited less precision compared to the PSO algorithm. This discrepancy suggests that Taguchi is primarily 
adept at optimizing single objectives for the offset and cant angle factors. Conversely, the PSO algorithm offers an 
advantage in terms of efficiency by simultaneously optimizing multiple objectives, resulting in superior outcomes for this 
particular problem. Furthermore, it is worth noting that Taguchi's analysis ranks the offset as having a more significant 
influence on the drag coefficient. At the same time, the cant angle exerts a more pronounced effect on the lift-drag ratio 
coefficient. 

XFLR5, as open-source and cost-effective software, is valuable for research in RC aeroplane design and offers 
significant benefits to aeromodelling clubs seeking to enhance their aircraft's performance. Additionally, for a deeper 
understanding of aerodynamic phenomena, complementary simulations such as CFD or small-scale wind tunnel testing 
can be employed to reinforce scientific knowledge and validate aerodynamic performance. This study contributed to 
understanding winglet design for RC aircraft and using the Taguchi method and PSO algorithm in this context. 

5.0 REFERENCES 
[1] P. Panagiotou and K. Yakinthos, “Aerodynamic efficiency and performance enhancement of fixed-wing UAVs,” 

Aerospace Science and Technology, vol. 99, p. 105575, 2020. 
[2] U.S. Department of Transportation, Aviation Maintenance Technician Handbook–Air frame, Federal Aviation 

Administration, FAA-H-8083-31B, Oklahoma City, OK, United States, 2023. 
[3] S. Gudmundsson, General Aviation Aircraft Design: Applied Methods and Procedures. 1st Ed. Butterworth-

Heinemann, United Kingdom, 2014. 
[4] P. Panagiotou, P. Kaparos, and K. Yakinthos, “Winglet design and optimization for a MALE UAV using CFD,” 

Aerospace Science and Technology, vol. 39, pp. 190–205, 2014. 
[5] P. Panagiotou, S. Antoniou, and K. Yakinthos, “Cant angle morphing winglets investigation for the enhancement 

of the aerodynamic, stability and performance characteristics of a tactical Blended-Wing-Body UAV,” Aerospace 
Science and Technology, vol. 123, p. 107467, 2022. 

[6] R. T. Whitcomb, “A design approach and selected wind tunnel results at high subsonic speeds for wing-tip 
mounted winglets,” NASA Technical Note, no. 19760019075, 1976. 

[7] J. P. Eguea, P. D. Bravo-Mosquera, and F. M. Catalano, “Camber morphing winglet influence on aircraft drag 
breakdown and tip vortex structure,” Aerospace Science and Technology, vol. 119, p. 107148, 2021. 

[8] N. Sethi and S. Ahlawat, “Low-fidelity design optimization and development of a VTOL swarm UAV with an 
open-source framework,” Array, vol. 14, p. 100183, 2022. 

[9] M. El Adawy et. al., “Design and fabrication of a fixed-wing Unmanned Aerial Vehicle (UAV),” Ain Shams 
Engineering Journal, vol. 14, no. 9, p. 102094, 2023. 

[10] S. G. Kontogiannis, D. E. Mazarakos, and V. Kostopoulos, “ATLAS IV wing aerodynamic design: From 
conceptual approach to detailed optimization,” Aerospace Science and Technology, vol. 56, pp. 135–147, 2016. 



B. Junipitoyo et al. │ Journal of Mechanical Engineering and Sciences │ Volume 17, Issue 4 (2023) 

journal.ump.edu.my/jmes  9789 

[11] P. Panagiotou, P. Kaparos, C. Salpingidou, and K. Yakinthos, “Aerodynamic design of a MALE UAV,” Aerospace 
Science and Technology, vol. 50, pp. 127–138, 2016. 

[12] J. Guerrero, M. Sanguineti, and K. Wittkowski, “CFD study of the impact of variable cant angle winglets on total 
drag reduction,” Aerospace, vol. 5, no. 4, p. 126, 2018. 

[13] S. Kapsalis, P. Panagiotou, and K. Yakinthos, “CFD-aided optimization of a tactical Blended-Wing-Body UAV 
platform using the Taguchi method,” Aerospace Science and Technology, vol. 108, p. 106395, 2021. 

[14] E. Atencio, F. Plaza-Muñoz, F. Muñoz-La Rivera, and J. A. Lozano-Galant, “Calibration of UAV flight parameters 
for pavement pothole detection using orthogonal arrays,” Automation in Construction, vol. 143, p. 104545, 2022. 

[15] A. Susanto, “Optimasi kinerja dan kestabilan unmanned aerial vehicle melalui pengaturan parameter dihedral dan 
tip-twist sayap dengan menerapkan metode artificial neural network-genetic algorithm,” Master Thesis, Institut 
Teknologi Sepuluh Nopember Surabaya, 2021. 

[16] F. Firdaus, “Optimasi kinerja dan kestabilan unmanned aerial vehicle melalui pengaturan parameter chord tip dan 
offset sayap dengan menerapkan metode artificial neural network-genetic algorithm,” Master Thesis, Institut 
Teknologi Sepuluh Nopember Surabaya, 2021. 

[17] F. D. Pertiwi, “Optimasi kinerja dan kestabilan unmanned aerial vehicle sebagai pengaruh konfigurasi blended 
winglet dengan menggunakan metode backpropagation neural network–genetic algorithm,” Master Thesis, Institut 
Teknologi Sepuluh Nopember Surabaya, 2022. 

[18] A. Boutemedjet, M. Samardžić, L. Rebhi, Z. Rajić, and T. Mouada, “UAV aerodynamic design involving genetic 
algorithm and artificial neural network for wing preliminary computation,” Aerospace Science and Technology, 
vol. 84, pp. 464–483, 2019. 

[19] R. Abnous, C. Zeng, S. Chowdhury, V. Maldonado, and P. Mancuso, “Conceptual design of a blended-wing-body 
tilt-arm hybrid unmanned aerial vehicle,” in 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and 
Materials Conference, Grapevine, Texas, 2017, pp. 1-19.  

[20] M. Baigang and W. Xiangyu, “A new aerodynamic optimization method with the consideration of dynamic 
stability,” International Journal of Aerospace Engineering, vol. 2021, p. 5551094, 2021. 

[21] T. Jiang and L. Jiang, “Optimization of UAV airfoil based on improved particle swarm optimization algorithm,” 
International Journal of Aerospace Engineering, vol. 2022, p. 2828198, 2022.  

[22] B. Mi, S. Cheng, Y. Luo, and H. Fan, “A new many-objective aerodynamic optimization method for symmetrical 
elliptic airfoils by PSO and direct-manipulation-based parametric mesh deformation,” Aerospace Science and 
Technology, vol. 120, p. 107296, 2022.  

[23] M. Bashir, S. Longtin-Martel, R. M. Botez, and T. Wong, “Aerodynamic design optimization of a morphing 
leading edge and trailing edge airfoil–Application on the UAS-S45,” Applied Sciences, vol. 11, no. 4, 2021. 

[24] M. Bashir, S. Longtin Martel, R. M. Botez, and T. Wong, “Aerodynamic design and performance optimization of 
camber adaptive winglet for the UAS-S45,” in AIAA SciTech 2022 Forum, San Diego, California, United States, 
2022.  

[25] J. Tao, G. Sun, X. Wang, and L. Guo, “Robust optimization for a wing at drag divergence Mach number based on 
an improved PSO algorithm,” Aerospace Science and Technology, vol. 92, pp. 653–667, 2019.  

[26] M. Leahy, “Multidisciplinary design optimization of a morphing wingtip concept with multiple morphing stages 
at cruise,” Master Thesis, University of Toronto, 2013. 

[27] Z. Wei and S. Meijian, “Design optimization of aerodynamic shapes of a wing and its winglet using modified 
quantum-behaved particle swarm optimization algorithm,” Proceedings of the Institution of Mechanical 
Engineers, Part G: Journal of Aerospace Engineering, vol. 228, no. 9, pp. 1638–1647, 2014. 

[28] J. Tao, G. Sun, J. Si, and Z. Wang, “A robust design for a winglet based on NURBS-FFD method and PSO 
algorithm,” Aerospace Science and Technology, vol. 70, pp. 568–577, 2017. 

[29] N. K. Hieu and H. T. Loc, “Airfoil selection for fixed wing of small unmanned aerial vehicles,” in Recent Advances 
in Electrical Engineering and Related Sciences: Lecture Note in Electrical Engineering, vol. 317, pp. 881–890, 
2016. 

[30] W. A. Widodo, “Studi numerik karakteristik aliran tiga dimensi pada body pesawat tanpa awak jenis cessna 182 
menggunakan airfoil august 160 dan penambahan trapezoidal winglet variasi h/S= 0, 15; 0, 20; 0, 25 dengan cant 
angle 90˚,” Jurnal Teknik ITS, vol. 9, no. 2, pp. B102–B107, 2021. 

[31] F. D. Pertiwi and A. Wahjudi, “Numerical study of blended winglet geometry variations on unmanned aerial 
vehicle aerodynamic performance,” The International Journal of Mechanical Engineering and Sciences, vol. 6, 
no. 1, pp. 31–36, 2022. 

[32] I. H. Güzelbey, Y. Eraslan, and M. H. Doğru, “Numerical investigation of different airfoils at low Reynolds 
number in terms of aerodynamic performance of sailplanes by using XFLR5,” Karadeniz Fen Bilimleri Dergisi, 
vol. 8, no. 1, pp. 47–65, 2018. 



B. Junipitoyo et al. │ Journal of Mechanical Engineering and Sciences │ Volume 17, Issue 4 (2023) 

journal.ump.edu.my/jmes  9790 

[33] A. Schumacher, E. Sjögren, and T. Persson, “Winglet effect on induced drag for a cessna 172 wing,” Bachelor 
Thesis, KTH Flygteknik. 2014. 

[34] A. Deperrois, “Part IV: Theoretical limitations and shortcomings of XLFR5,” XFLR5 Documentation, vol. 1, pp. 
1-33, 2019. 

[35] I. Soejanto, Desain Eksperimen dengan Metode Taguchi, 1st Ed. Yogyakarta: Graha Ilmu, Indonesia, 2009. 
[36] P. Woolf et. al., Chemical Process Dynamics and Controls, 1st Ed. Chemical Process Dynamics and Controls, 

LibreTexts, United States, p. 751, 2022. 
[37] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International Conference 

on Neural Networks, Perth, Australia, pp. 1942–1948, 1995. 
[38] K. E. Parsopoulos and M. N. Vrahatis, Particle Awarm Optimization and Intelligence: Advances and Applications: 

Advances and Applications, 1st Ed. IGI Global, United States, 2010. 
[39] C.-Y. Lee and M. Tuegeh, “An optimal solution for smooth and non-smooth cost functions-based economic 

dispatch problem,” Energies, vol. 13, no. 14, p. 3721, 2020. 

  

 

 


	1.0 INTRODUCTION
	2.0 METHODS AND MATERIALS
	2.1 Winglet Geometry Design with XFLR5
	2.2 Winglet Objective Function
	2.3 Taguchi Method
	2.4 Particle Swarm Optimization

	3.0 RESULTS AND DISCUSSION
	3.1 Taguchi for Aerodynamic Performance
	3.2 PSO for Aerodynamic Performance

	4.0 CONCLUSION
	5.0 REFERENCES

