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ABSTRACT - Vehicle routing problem is one of the combinatorial optimisation problems that have QZQS:;E: gﬁjﬁaﬁzozz
gained attraction for studies because of its complexity and significant impact to service providers Revised: 08" Aug. 2022
and passengers. Vehicle routing problem with time windows (VRPTW) is a variant where vehicles Accepted: 161 Aug. 2022
need to visit the predetermined stop points within the given time frame. This problem has been

widely studied and optimised using different methods. Since the performance of algorithms in KEYWORDS

different problems is dissimilar, the study to optimise the VRPTW is ongoing. This paper presents Vehicle routing problem
a VRPTW study for a public transportation network in Kuantan and Pekan districts, located in East Time windows

Pahang, Malaysia. There were 52 stop points to be visited within two hours. The main objective of Harris Hawk optimiser

the study is to minimise the number of vehicles to be assigned for the routing problem subjected
to the given time windows. The problem was optimised using a new algorithm known as Harris
Hawks Optimiser (HHO). To the best of authors’ knowledge, this is the first attempt to build HHO
algorithm for VRPTW problem. Computational experiment indicated that the HHO came up with
the best average fitness compared with other comparison algorithms in this study including Artificial
Bee Colony (ABC), Particle Swarm Optimisation (PSO), Moth Flame Optimiser (MFO), and Whale
Optimisation Algorithm (WOA). The optimisation results also indicated that all the stop points can
be visited within the given time frames by using three vehicles.

INTRODUCTION

Vehicle routing problem (VVRP) is characterised as a problem of determining the optimal delivery or collection routes
from one or few depots to several cities or customers, satisfying some constraints at the same time [1]. It is aimed to find
out the optimised route at minimal cost which begins and ends at the depot. Some of the VRP objectives are to minimize
the total travelling distance, minimize vehicle number, minimize cost or combination of optimization objectives [2].
According to [3], the original VRP was stated by Dantzig and Ramsar in 1959 and it was defined as a the Travelling
Salesman Problem (TSP). Also, it was used to solve the problem of optimisation of transport route which is also known
as Atlanta’s refinery problem. In distribution and logistics systems, VRP plays a vital role [4].

There are some most used applications of the VRP, for instance, gasoline delivery vehicles, household waste
collection, distribution of goods and delivery of mails [5]. In today’s high competition world, VRP become significant in
the distribution and logistics system as routing of vehicles for goods and services is an vital task in nowadays [6]. It has
conclusively been shown a huge amount of cost is being spent in the delivery of goods and services, for example, fuel
consumption, maintenance of vehicles, operation of vehicles and so on. Besides, a number of studies have attempted to
explain that fuel consumption actually leads to environment pollution such as carbon emission and energy consumption
with the rapid transportation of vehicles. Therefore, VRP is playing an important role to minimize cost by reducing the
exorbitant amount of money, carbon emissions and energy consumptions as well as satisfying in the optimum routes
planning [7].

The vehicle routing problem is classified into several categories, which include static conditions, vehicle-related
conditions, operation type, features of problem, and operational constraints. In static conditions, there are two conditions:
single depot and multiple depots. A number of studies have found that the standard VRP, which have to determine the
delivery routes to serve all the nodes is known as single depot routing problem, and the total distance travelled is minimum
[8]. On the other hand, a multi-depot routing problem refers to a fleet of vehicles that can be based on any one of the
numerous depots. While the constraints are still applied, each of the vehicles must begin travel from the depot and finally
return to the same depot. Previous studies have reported that even though the problems are small, the multi-depot routing
problem is hard to solve optimally [9 - 12].

The second classification of vehicle routing problem is the vehicle-related constraints which are separated into
homogenous vehicle capacity, heterogeneous vehicle capacity, heterogeneous fixed fleet, and mixed fleet. The study by
Laporte et al. examined that the routing problem with homogenous vehicle capacity is the problem which the number of
vehicle is equivalent with their capcity [8]. Meanwhile, a heterogeneous vehicle routing problem consider the fleets with
variabe capacities and costs [6, 13]. Besides that, researchers have described that a fleet with a fixed number of vehicles
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of more than one type and with varying capacities is the heterogeneous fixed fleet routing problem [6, 14]. Finally, the
routing problem with a mixed fleet, consists of several heterogeneous vehicles characterised by capacity and both fixed
and variable cost.

Subsequently, the third classification of VRP is based on the type of operations. Among of the operations types were
pick-up or delivery, pick-up preceding delivery or vise versa, and combination of pick-up and delivery. According to
Anbuudayasankar et al., many of the problems with the precedence of delivery have been predominantly dealt with a
much smaller number of pick-up activities [6]. The previous study has pointed out that the simultaneous presence and
mixing up of pick-up and delivery activities are characterised as pick-up and delivery problems [15].

Usually, a depot is set as the starting and ending point for a route. Then, when scheduling a route, its start time and
duration of travel must be determined whereas the node time window and breaks are being observed at the same time.
However, there are some cases that special consideration is required in the determination of start time. For instance, due
to the limitation of the number of vehicles, start times might interlace to load the vehicles simultaneously. Moreover, an
additional set of constraints may include in the planning of routes for the drivers that work extend beyond a single day
owing to their safety.

Vehicle routing problem with time window (VRPTW) is generalised from the well-known VRP. It is a basic
distribution management problem and is also considered as a combination of vehicle routing and scheduling problem that
can be used to model various real-world problems [16]. It is aimed to design a set of minimum cost routes, departing and
returning at a depot, for a fleet of vehicles servicing a set of customers, at the same time fulfilling the known demands
[17]. The customer must be visited exactly once by a vehicle, and the capacity of a vehicle should not exceed a certain
amount. To emphasise, the time windows are associated with the depot and the customers.

When the service to each customer starts, it must be made sure that the service is inside the time window. The time
window refers to a set of earliest and latest time when the vehicle should reach the stop points to serve the passangers
[18]. However, the vehicle may arrive at a customer before the time window is opened, thus the service at each customer
will use up a predefined amount of time. Moreover, those vehicles must return to the depot before the time window of
the depot is closed. The time needed to travel between customers is relative to the distance between customers [19]. There
are some useful examples of WRPTW applications, such as public bus routing, industrial refuse collection, food
distribution, and perishable product distribution.

Generally, a lot of solution approaches have been proposed to solve and optimize VRPTW. The solution approaches
can be divided into three categories, namely, exact methods, heuristics, and metaheuristics [20]. Generally, exact methods
is more efficient to solve a small size problem [3]. Exact methods will evaluate all possible solutions for the problem.
Therefore, the obtained solution form exact method is the real best solution. On the other hand, heuristics methods provide
acceptable solution quality within a short period. This approach is suitable for large size problem, where the exact method
is impossible to be implemented. Although the obtained solution is not guaranteed as the real best solution, but it is
acceptable for implementation. Meanwhile, metaheuristics is a higher level optimization approach that located in between
exact and heuristics methods. Metaheuristics provide better solution quality compared with heuristics, but it still not
guaranteed the real optimum solution. Some of metaheuristics that implemented to solve VRPTW were simulated
annealing (SA), tabu search (TS), and genetic algorithms (GA) [18].

Tabu search algorithm was proposed by Glover in 1986 and Fisher et al. in 1997 and applied to the VRPTW problem
by Garcia in 1994 [21]. It is a local search metaheuristics and a kind of global optimisation algorithm [6]. By moving at
each iteration, tabu search explores the space of solution from current solution to the best solution in its neighbourhood
in order to achieve computational efficiency, reported by Tarantilis et al. (2005). [21] indicated that a tabu list has been
introduced by tabu search to realise the global optimisation. Although tabu search can ensure the exploration of different
effective search methods, as it involves complex neighbourhood transformation and strategy solving, it is not easy for
implementation.

Simulated annealing was proposed by Metropolis in 1953, and it is a stochastic optimisation algorithm based on the
Monte-Carlo iterative method [3, 21]. Several studies have revealed that simulated annealing method is a local search
metaheuristics approach that is also a single solution based upon the physical process of annealing in metallurgy, where
the process refers to the heating of the element at very high temperature and controlled cooling in a slow rate that will
intelligently guide the overall exploration process when conducting a local search, at the same time agreeing to take
inferior solutions with some probability in order to try to avoid local minima. In addition, in a controlled manner, the
possibility of accepting solutions is offered so that the path of search does not descend [6, 22, 23]. In general, simulated
annealing method is aimed to find out the optimal solution when the time given is long enough to run the algorithm.
However, [21] pointed that simulated annealing method is not suitable for small scale VRP, only for large scale of VRP.

A stochastic search algorithm, which is also population-based that uses the concept of evolutionary biology where it
was inspired by the principles of natural genetic and natural selection, is known as genetic algorithm [24]. Cao and Yang
[3] highlighted that J. Lawrence was the first ever to use genetic algorithm for research of VRP, and is also designed to
effectively solve VRPTW. In the genetic algorithm method, the tested candidate solutions from initial generation is started
against the objective function. Then, by undergoing the genetic operators such as selection, crossover, and mutation, from
the first generation, the following generations will evolve from it by a randomised yet organised exchange of information
by following the fittest survival rule [24]. Shunmugam and Kanthababu [25] described that the selection, crossover, and
mutation are genetic operators that are bio-inspired, and are used to optimise and examine problems to obtain better
solutions which are the finest to mimic the function.
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This research modelled and optimised a case study of VRPTW. For modelling purposes, a set of data consisting of 52
stop points in the districts of Kuantan and Pekan, Pahang was collected for the route planning purpose. Differing from
existing research, a new algorithm called as Harris Hawk Optimiser (HHO) was implemented to solve and optimise the
problem. This algorithm was chosen because of its tremendous performance in continuous problem compared to well-
established algorithms. In addition, HHO is a new metaheuristic algorithm that introduced in 2019. It has a unique
cooperative mechanism to enhance the searching process.

PROBLEM FORMULATION

Previous studies have reported that VRPTW can be stated mathematically as follows [5, 18, 26]. The VRPTW is given
by a single-vehicle of capacity Q, a set of customers that are denoted as N = {1, 2..., n}, and a completed directed graph
with arc set A. Eq. (1), djj is the distance between point i and j. Each customer i € N is characterised by a demand g;, a
service or dwell time s; and a time window [a;, bi], where a; is the earliest time to begin service whereas b; is the latest
time to end the service [26]. In addition, a vehicle must arrive at the customer before the time window closes, which is
before bi, and must wait if the vehicle arrives early at a customer before the time window opens, for example, before time
aj.
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Where

x;; is Lifarc (i, j) € A" isin route r, 0 otherwise; note that xg ., is 1 if route r is empty;
yi is 1 if customer i is in route r, O otherwise;
t7 is the time of service starts at customer i in route r;
t$ is the begin time of route r;
T +1 IS the end time of route r.

In this model, Eg. (3) describes that the vehicle should visit each customer exactly once. Meanwhile, Egs. (4) until (7)
define the capacity constraints to ensure the total demand is less than vehicle capacity. On the other hand, Egs. (8) until
(11) make sure that the time schedule is fulfilled. Equation (12) presents the vehicle setup time, while Eq. (13) represents
the deadline constraints for serving a customer [26].

Table 1. Stop points and time windows data for vehicle route planning

Stop No. Coordinate Time Windows  Stop No. Coordinate Time Windows
1 3.4900, 103.3965 [50, 60] 27 3.7230, 103.1240 [40, 50]
2 3.4922, 103.3894 [50, 60] 28 3.7235, 103.3219 [15, 25]
3 3.5018, 103.3833 [50, 60] 29 3.7322,103.1263 [35, 40]
4 3.5116, 103.3948 [50, 60] 30 3.7341, 103.3181 [5, 15]
5 3.5215, 103.3912 [50, 60] 31 3.7348, 103.2679 [15, 25]
6 3.5298, 103.4484 [50, 60] 32 3.7356, 103.1679 [25, 35]
7 3.5305, 103.3881 [50, 60] 33 3.7491, 103.1923 [15, 25]
8 3.5322, 103.4614 [50, 60] 34 3.75046, 103.2611 [10, 20]
9 3.5383, 103.3854 [50, 60] 35 3.7506, 103.3149 [5, 15]
10 3.5532, 103.3802 [48, 58] 36 3.7558, 103.3151 [5, 15]
11 3.5654, 103.3758 [45, 55] 37 3.7622, 103.2134 [15, 25]
12 3.5790, 103.4172 [35, 45] 38 3.7696, 103.2361 [10, 20]
13 3.5841, 103.3719 [42, 52] 39 3.7701, 103.2595 [10, 20]
14 3.5911, 103.3534 [40, 50] 40 3.7711, 103.2530 [10, 20]
15 3.6055, 103.3275 [30, 40] 41 3.7751, 103.3189 [5, 15]
16 3.6288, 103.3135 [30, 40] 42 3.7754, 103.2677 [8, 15]
17 3.6377, 103.3610 [35, 45] 43 3.7795, 103.2781 [8, 15]
18 3.6955, 103.2805 [20, 30] 44 3.7840, 103.2895 [8, 15]
19 3.6968, 103.3386 [25, 35] 45 3.7885, 103.3008 [5, 10]
20 3.7003, 103.3368 [25, 35] 46 3.7889, 103.3288 [5, 10]
21 3.7068, 103.1187 [40, 50] 47 3.7928, 103.3099 [5, 10]
22 3.7085, 103.3263 [15, 25] 48 3.8028, 103.3365 [5, 10]
23 3.7089, 103.0537 [50, 60] 49 3.8037, 103.3266 [2, 5]
24 3.7135, 103.1304 [25, 35] 50 3.8057, 103.3261 [2, 5]
25 3.7178, 103.0737 [50, 60] 51 3.8063, 103.3275 [2, 5]
26 3.7230, 103.1198 [35, 40] 52 3.8123, 103.3229 [2, 5]

Data Collection

In this project, a transportation network in Kuantan and Pekan districts located in east Pahang, Malaysia was
considered. In total, there were 52 stop points that needed to be taken into account. A depot, S, and a set of stop points,
Si taken from the routes were labelled, where i=1,2, 3, 4..., n. The data collected from Sy to S;was in distance (kilometres)
and then converted into time taken for public vehicles to travel (minutes). After that, the depot and stop points were
arranged in random sequence in the matrix form together with the time taken in minutes. The time window for one vehicle
to complete one route, departing from depot and returning to depot was set to complete within 120 minutes (T < 120
minutes). Therefore, manual calculation was performed for all the bus stations through the data matrix.

Firstly, let the number of vehicles used equal to 1 and assume that the time taken for the vehicle to depart from the
depot to be the same as the time for vehicle to return to the depot. Thus, the times are added up and represented as t.
Next, let t; be the time taken for the second stop point and added into t;. The summation of t; and t, was checked to make
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sure it was less than T. If the summation is less than T, then a third stop point should be added into it. Meanwhile, if the
summation is more than T, then the previous stop point should be eliminated and total time is recorded. Besides, the
number of vehicles used ought to be updated to 2 and recalculate the time taken for the next stop point. The steps were
repeated for the rest of the stop points until all the points have been visited. Finally, the total number of vehicles that
should be used can be determined. Table 1 shows the stop points and time windows data that were collected for this study.

HARRIS HAWKS OPTIMISER

Harris Hawks Optimiser (HHO), an algorithm which is population-based and uses the technique of gradient-free
optimisation. With a proper formulation, any optimisation problem can be applied by the HHO with the aim to balance
the exploration and exploitation in the algorithm [27]. This optimiser is a new mathematical model which was inspired
by the cooperative behaviors of Harris’ hawks, which are listed as one of most intelligent birds in nature, in chasing those
escaping preys such as rabbits, was proposed by Heidari et al. in 2019.

All the stages of hunt used by Harris’s hawks is mimicked by the mathematical models proposed by Heidari et al. and
then used to solve the optimisation problems with single objective effectively [28]. There are three phases in HHO. The
first phase refers to the ability of exploration, then the second phase is the exploitation, and lastly the third phase is still
the exploitation where the local solutions are intended to be improved from the previously solved solutions [29]. The flow

of HHO is presented in Figure 1.

Initialize solution and
parameters

v

—»  Calculate fitness, X)

v

Update best solution,
Krabiit

v

Update initial energy (Eo),
Jump strength (I)

v

Update prey energy (E)

'

Update prey location

Figure 1. Flow chart of Harris Hawks optimiser

Before running the HHO, three parameters that should be specified in order to solve the vehicle routing problem with
time window to make comparison with the other two methods. The three parameters are the problem dimension number,
maximum iterations and size of population. Similarly, those values were set to be the same as the other two methods.
First of all, the value of the population size was 100, followed by the maximum number of iterations of 1500. Lastly, the
value of variable numbers was assigned to be 52. Just like the genetic algorithm and simulated annealing method, the
other parameters were set as default.

Initialise, Calculate Fitness and Update Best Solution

The HHO began by creating initial solutions and also defining related parameters such as population size, maximum
iteration, and constant values in the algorithm. The evaluation step was conducted by calculating the fitness according to
the fitness function. Next, the best solution known as Xranbit, Was updated to store the best obtained fitness.

9060 journal.ump.edu.my/jmes <«



S.W. Chai et al. | Journal of Mechanical Engineering and Sciences | Vol. 16, Issue 3 (2022)

Update Initial Energy, Jump Strength and Prey Energy

Next, the algorithm updated the initial prey energy (Eo). The Eo was generated randomly between [-1, 1]. The initial
jump strength was also created in this step. Later on, the prey energy (E) was updated using Eq. (16).

t
E =2E)|= 16
o (2) (16)
In Eq. (16), t is the current iteration, while T is the maximum iteration. The Eo is obtained from the previous step. If

the |E| = 1, the hawks will search different regions (exploration phase) because the prey has good energy to escape.
However, if |E| < 1, the hawks will continue to hunt this prey (exploitation phase).

Update Prey Location

For exploration, the hawks will observe the targeted site. The following equation is applied in this phase.

Xrand (t) - r1|Xrand (t) - ZrZX(t)l q =05

(Xravvie ®) = Xm(®)) —73(LB +7,(UB —LB)) ¢ <05 (17)

X(t+1)={

X(t+1) represents the new solution in the following iteration. X(t) is the current solution, Xy, is the average position of
current hawks, Xang is the random hawk selection, and UB and LB are the upper and lower variables bound. Meanwhile
g and ry until rs represent random numbers between [0, 1].

On the other hand, for exploitation phase, a random r [0, 1] and |E| were used to determine the approach. When r >
0.5and |E| = 0.5, a soft besiege exploitation was used. It literally means that the prey still has enough energy to escape.
For this approach, the solution updating procedure uses Eq. (18) below

X(t+1) = AX(t) = ElJXyappie (©) — X (0] (18)
AX(t) = Xrappic () — X(O) (19)
E is the prey energy, while Xranit iS the best solution, and J is the jump strength.
J=2(1-15) (20)
where rs is a random number [0, 1].
In the situation where r > 0.5 and |E| < 0.5, a hard besiege is applied.
X(t+1) = Xrappie (t) — E|AX (0] (21)

Meanwhile, if » < 0.5 and |E| = 0.5, soft besiege with progressive rapid dives was in use.

Y = Xrappic (t) — ElJ Xrappic (t) — X (2)] (22)
Z=Y+SxLF(D) (23)
r'(l+pB) xsin WARY
LF(x) = 0.01 x ”X—f’,a = ( i_l (24)
|v|F I‘(l-'z_ﬁ)xﬁxz(T)
(Y if F(Y) < F(X(1))
X@E+1) = {Z if F(Z) < F(X(1) (25)

Where S is random vector with 1 x D for D is the dimension of the problem. Meanwhile, LF is the Levy-flight function,
with random u, v [0,1] and beta coefficient = 1.5.

Finally, if r < 0.5and |E| < 0.5, the algorithm used hard besiege with progressive rapid dives. The difference of
hard besiege with soft besiege is on the Xn(t) and X(t) in Egs. (22) and (26).

Y = Xyapbie (6) — E|] Xrappic (£) — X (O] (26)

9061 journal.ump.edu.my/jmes <«



S.W. Chai et al. | Journal of Mechanical Engineering and Sciences | Vol. 16, Issue 3 (2022)

RESULTS AND DISCUSSION

Table 2 presents the optimisation results of the studied problem. The results were given in the average fitness, standard
deviation, and best fitness. The optimisation was repeated 30 times with different random seeds. Seven optimisation
algorithms were used in the computational experiments. The HHO results were compared with well-established
algorithms like Artificial Bee Colony (ABC), Firefly Algorithm (FA) and Particle Swarm Optimisation (PSO). The results
were also compared with relatively new algorithms known as Moth Flame Optimiser (MFO), Grey Wolf Optimiser
(GWO), and Whale Optimisation Algorithm (WOA).

Based on Table 2, HHO obtained the minimum average fitness compared to other algorithms. On the other hand, MFO
showed the most consistent algorithm with the smallest standard deviation. At the same time, the best fitness algorithm
was shared by HHO and WOA.. Both of these algorithms were able to give solutions with three busses to cover the routes.

The results indicated that both HHO and WOA were able to come up with minimum solution. However, HHO was
more consistent than WOA. It can be observed through average fitness and also standard deviation. The result also
indicated that HHO is more reliable to generate optimum solution for this problem. It is important to have reliable
algorithm especially with limited time and resources.

Table 2. Optimisation results for VRPTW case study

Indicator ABC FA PSO MFO GWO WOA HHO
Average Fitness 7.5 7.6 8.9 5.8 8.6 4.1 3.4
SD 1.4337 2.2706 0.9944 0.4216 0.9661 1.1972 0.6992
Best Fitness 6 5 7 5 7 3 3

In order to evaluate the significance of result, a non-parametric statistical test called Wilcoxon-signed rank test was
conducted between HHO and comparison algorithms. The null hypothesis stated that the median of the HHO and
comparison algorithms are equal. The null hypothesis will be accepted when the p-value is more than significance level,
0.05. Otherwise, the null hypothesis will be rejected.

Table 3 shows the p-values of Wilcoxon-signed rank test. All the p-values were less than 0.05, which indicated that
the null hypothesis is rejected. It brings the meaning that the median of HHO and comparison algorithms were unequal,
and the HHO results has significant different over the comparison algorithms.

Table 3. p-value of HHO versus comparison algorithms

Comparison Algorithm p-value
ABC 1.05E-11
FA 1.22E-11
PSO 1.17E-11
MFO 8.18E-12
GWO 1.14E-11
WOA 0.0081

The best solution was obtained by HHO as presented in Table 4. Based on the obtained solution, the maximum
travelling time is 120 minutes as obtained by the first route.

Figure 2 shows the average convergence plot of all optimisation algorithms. Most optimisation algorithms had early
convergence, where the convergence roughly stopped by 1000 iterations. This pattern can be observed in PSO, GWO,
FA, MFO, and WOA convergences. In contrast, the ABC converged slowly from the beginning until the end of iteration.
The HHO on the other hand rapidly converged for the first 1000 iterations and converged slowly between 1000 to 2000
iterations and another convergence occurred before 3000 iterations. There were many reasons for the early convergence.
The most common reason is the algorithm is being trapped in local optima. A good algorithm should be able to maintain
the solution diversities.

Table 4. Optimum route for case study problem

Bus No Route (Stop Number) Total travelling time (minutes)
52 -50-51-49-47-45-44-43-42-39-34-31-18-16-15-14—
Bus 1 13-11-10-9-7-5-4-3-2-1-2-3-4-5-7-9-10-11-13-14 119.02

—-15-16-18-31-34-39-42-43-44-45-47-49-51-50-52
52-48-46-41-36-35-30-28-22-20-19-17-12-6-8-6—-12 -

Bus 2 17-19-20-22-28-30-35-36 41— 46 — 48 - 52 113.76
52-40-38-37-33-32-24-26-29-27-21-25-23-25-21-27—
Bus 3 29-26-24-32-33-37-38-40-52 116.12
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Figure 2. Convergence plot of HHO and comparison algorithms

HHO was found as the best algorithm to optimise the studied problem as it has several features which can efficiently
help in exploring and exploiting the search space of an optimisation problem. Firstly, it is able to further elevate the
patterns of the exploration and exploitation with the escaping energy parameter. The exploratory phase in the initial
iteration of simulation of HHO can be enhanced by the use of various diversification mechanisms with regard to the
hawks’ average location, while the exploitative phase during the local search can be boosted by the diverse LF-based
patterns with short-length jumps.

Additionally, there are search agents in the HHO which are assisted by the progressive selection scheme that are able
to enhance the position which can improve the solution quality simultaneously. Furthermore, in order to balance both
exploration and exploitation phases, some strategies of searching based on three parameters, namely the escaping energy
of the prey, random number that will update in every iteration, and random jump strength of prey, can be utilised, which
can enhance the quality of the solution. Since HHO has several exploratory and exploitative mechanisms with adaptive
and time-varying parameters, it can efficiently overcome the immature convergence problems.

In order to validate the optimization result, a simulation has been conducted using MATLAB software. The purpose
of simulation is to compare the existing vehicle route with the optimized route using HHO.

In the simulation, the controllable variable is the percentage of time variance. As shown in the first column of Table
5, the time variance is increased from 1% until 20% from the mean value. The data was randomly generated based on the
mean value and predetermined variance using normal distribution. For each of time data variance, 10,000 simulation
repetition was made. Then the probability of both solutions violating time window and maximum travelling time
constraints were measured.

Table 5 indicated the simulation results of existing and optimized solution. The results are given in the form of
probability of solution violating the time window and maximum travelling time constraints. As an example, for the data
variance at 1%, there were 2.38% probability of the existing solution will break the time window constraint. Meanwhile,
only 0.68% chance that the optimized solution will violate the time window constraint.

Table 5. Simulation results of existing and optimized route

Existing Solution Optimized Solution
Time data variance (%) P_robabi_lity of P_robability of_ P_robabi_lity of P_robability of_

time window maximum travelling time window maximum travelling
violated (%) time violated (%) violated (%) time violated (%)

1 2.3820 0.0000 0.6825 0.0000

2 4.2127 0.0431 0.8537 0.0167

3 5.3557 0.7412 1.1782 0.6133

4 6.7580 2.5137 1.6386 2.0233

5 8.1988 4.6157 2.2167 3.5833

6 9.6827 6.3176 2.8118 4.9833

7 11.2094 7.7294 3.3784 6.5833

8 12.6784 9.6667 4.0288 7.5367

9 13.1676 11.1490 4.5410 8.5733

10 13.5704 12.0745 5.0727 9.1633

11 14.0094 13.6078 5.6071 9.6567

12 14.5486 14.8706 6.1284 10.5367

13 14.9669 15.9608 6.6845 11.2067
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Table 5. Simulation results of existing and optimized route (cont.)

Existing Solution Optimized Solution
Time data variance (%) P_robabi_lity of P_robability of_ P_robabi_lity of P_robability of_

time window maximum travelling time window maximum travelling
violated (%) time violated (%) violated (%) time violated (%)

14 15.3645 16.6902 7.2155 11.7633

15 15.8051 17.5765 7.8675 12.8633

16 16.3561 19.0588 8.4598 13.7667

17 16.7369 19.1373 8.9620 14.5033

18 17.1706 20.3294 9.5124 15.4000

19 17.6475 20.9529 10.1257 16.7300

20 18.0675 21.5725 10.6696 17.6067

According to Table 5, the optimized solution consistently came out with lower probability of violating time window
and maximum travelling time constraints. At 10% data variance, the probability to break time window constraint is only
5.07% compared with existing route with 13.57% probability. For maximum travelling time constraint, the probability of
the existing and optimized solutions violating the constraint were 12.07% and 9.16% respectively.

Based on simulation results, the optimized solution had 60.7% less chances to violate the time window constraint
compared with existing solution. Meanwhile the optimized solution also better than existing solution in term of breaking
maximum travelling time constraint. The average difference is about 25.5%. The simulation results indicated that the
optimized solution using HHO is capable to serve the studied problem better.

CONCLUSIONS

This paper presents a Vehicle Routing Problem with Time Windows (VRPTW) optimisation. A case study of routing
problem in Kuantan and Pekan, Malaysia was investigated and optimised. The studied problem consisted of 52 stop points
that need to be visited and then return to depot within 120 minutes. The problem was formulated and optimised using a
new algorithm known as Harris Hawk Optimiser (HHO). The result was compared with six well-known metaheuristics;
Acrtificial Bee Colony (ABC), Firefly Algorithm (FA), Particle Swarm Optimisation (PSO), Moth Flame Optimiser
(MFO), Grey Wolf Optimiser (GWO), and Whale Optimisation Algorithm (WOA).

The results indicated that HHO and WOA were able to search for minimum fitness, which is the number of vehicles
to be assigned. In addition, the HHO obtained the best mean fitness compared to the other comparison algorithms.
Simulation results indicated that the optimized solution using HHO consistently had lower chance to break the time
window and maximum travelling time. The output from this study could assist vehicle service providers to optimise their
resources, and at the same time deliver punctual service to passengers. In the future, the research could be expanded to
commercial vehicles and delivery services in line with the current online purchasing trend.
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