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INTRODUCTION 

  Energy savings have become a priority for the manufacturing industry [1]. This priority not only to minimize 

manufacturing costs but also to environmental requirements is becoming a major issue that requires companies to improve 

manufacturing processes to minimize their impact on the environment. The choice of cutting parameters tools and optimal 

design of the tool path can be the basis for energy savings ranging from 6 to 40 % [2]. Therefore, improving the energy 

efficiency of machine tools could lead to a significant reduction in the environmental impact of the products consumed 

[3]. Several studies are being carried out to determine the influence of cutting parameters on energy consumption and 

surface quality in a machining process. To achieve this objective, static methods can be used to predict energy 

consumption, tool life, surface roughness and cutting forces, based on cutting parameters and the machining process. 

Caramita [4] demonstrates using Taguchi and ANOVA's methodology that feed rate is the most important factor in 

minimizing energy consumption and surface roughness when turning AISI 6061 T6 steel. Rajesh's studies [3], show that 

cutting speed is the most important factor influencing tool energy consumption and tool life followed by cutting depth, 

feed rate, and nose radius when turning the AA7075 15 % CIS composite. Jihong You et al. [1] used Taguchi's design 

method to verify the multi-objective optimization method, they showed that machining with low rotating speed is more 

energy-efficient than high speeds for the milling process of medium carbon steel (C45). Stefan et al [5] presented an 

approach for optimizing cutting parameters to minimize direct energy consumption when turning two types of steel. Kant 

et al [6] applied multi-objective optimization to minimize energy consumption and surface roughness when machining 

AISI 1045 steel. The results obtained indicate that the feed rate is the most important machining parameter, followed by 

the cutting depth and cutting speed to reduce energy consumption and surface roughness. Li et al. [7] presented a complex 

method of optimization of cutting parameters with energy efficiency objectives and a processing time incorporating the 

Taguchi method, the response surface method (RSM) and the algorithm multi-objective optimization. The research work 

of Paramjit et al. [8] focuses on the optimization of cutting parameters (cutting speed, feed rate, depth of cut and nose 

radius) to minimize energy consumption. Pragnesh et al. [9] studied the effects of different cutting parameters on 

roughness and energy consumption during the turning of the ICT composite material (MMCS) made of alloy 6063AL. 

The results show that cutting speed has a significant influence on energy consumption. Resul et al. [10] presented a 

prediction model to estimate the theoretical energy consumption required for milling prismatic parts based on the STEP 

AP224 Protocol. The results of this study show that the prediction works with an accuracy of 5 %. The studies of Caramita 

et al. [11] present an experimental study related to the optimization of cutting parameters during the machining of AISI 

1018 steel. 

 

 

ABSTRACT – Increasing the quality of a machined product and minimizing energy consumption is 
a primary objective for all industries, given their significant impact on manufacturing costs and the 
environment. The choice of the machining process and the optimal cutting parameters to meet this 
requirement is the objective of this experimental study, which deals with the effects of the cutting 
parameters and the machining process on the energy consumption and surface condition during 
the milling of AISI 304L austenitic steel. This article presents a multi-objective optimization method 
based on the response surface methodology and Grey's weighted relational analysis. Based on 
this approach, the down milling cutting parameters indicate that the cutting speed is the most 
influential parameter on energy consumption (62.71%), while the feed rate is the most influential 
factor in roughness (47.20%). For up milling, the cutting speed is the most important factor 
influencing surface roughness (29.07%) and also energy consumption (64.09%).It has also been 
found that the cutting power can be reduced by 39% for down milling and 16% for up milling 
compared to the maximum value. On the other hand, the quality of the machined surface can be 
improved by 58.5% for down milling and by 60% for up milling. 
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The objective is to minimize the amount of energy consumed during cutting operations by setting the material removal 

rate. The work of Aqib et al. [12] shows that the optimal values of spindle speed (1200 rpm), feed rate (320 mm/min), 

cutting depth (0.5 mm) and cutting length (15 mm) give a 20.7 % reduction in energy consumption during milling of AISI 

1045 steel. Studies by Anirban et al. [13] describe the effects of cutting parameters on surface quality and energy 

consumption using the Taguchi plan when machining AISI 1045 steel. The results show a significant effect of cutting 

speed on surface roughness and energy consumption, unlike the other parameters that do not have a significant impact on 

responses. The research of Jingxiang et al. [14] aims to model the energy consumption of the numerically controlled 

machine. The approaches aim to reduce the energy consumption related to spindle acceleration. The experimental work 

of Harsh et al. [15] presents the influence of the three cutting parameters, spindle speed, cutting depth and feed rate 

affecting the energy consumption and surface roughness during turning of alloy steel EN-31. The results show that when 

the spindle speed increases, the surface roughness decreases, and energy consumption increases. Luoke et al. [16, 17] 

studied the energy consumption of (EC) and not cut (ENC) of a machine tool. They approved that it is possible to reduce 

the energy consumption of the cutting or non-cutting machine tool by adjusting the characteristics of the parts and the 

planning of machining processes. The work of Triebe et al. [18] aims to understand energy consumption in a machine 

tool with the development of an energy flow map from which to improve and identify energy-related characteristics. M.S. 

Najiha et al. [19] investigated the effects of face milling technology parameters on material removal rate using MQL 

techniques. The use of the different types of coated and uncoated cutting tools showed remarkable cutting performance 

of the TiAIN coated tool compared to the others. Therefore, the yield is more suitable with the MQL technique for this 

type of coating. Research into power consumption for down and up milling modes is sparse. Most researchers deal with 

the effects of these modes on cutting forces, tool wear, surface roughness, and temperature. For example, the study by 

Vakkas et al. [20] showed that to maximize tool life and minimize cutting effort, a combination of up milling, vegetable-

based cutting oil, and a 100 ml/h flow rate is required. This allows us to conclude that the minimum cutting force and, 

consequently, the minimum power consumption are given by up milling. The work of Tian et al. [21] presents an 

experimental investigation to identify the effects of cutting speed during climb and opposition milling of Inconel 718. 

Their study shows that with the same cutting speed, notching on the flank face of the tool and flaking on the rake face is 

greater with down milling than with up milling. This result is generally due to the increase in cutting forces with this type 

of milling. On the other hand, the roughness of this type of milling (down) is lower than that of up milling. Based on the 

RSM methodology, Maserati et al. [22] developed a mathematical model for the prediction of cutting force, surface 

roughness, and residual stress. The results show that with up milling and with a nanolubrication system (MQL-SiO2), it 

is possible to minimize both the cutting force and the residual stresses. It can be concluded that the down and up milling 

modes have a significant effect on the cutting forces, the roughness, and consequently the wear of the tool. 

Studies on the impacts of down milling and up milling on energy consumption are still insufficient in the face of the 

progressive increase in energy demand in the industrial sectors. These studies have not been the subject of extensive 

research until now, so our work focuses on the effects of cutting parameters and the choice of machining mode on energy 

consumption and surface roughness in the milling process of 304L stainless steel. 

 

EXPERIMENTAL METHODS 

Material 

The material used in this study is austenitic stainless steel AISI 304L. Table 1 shows the chemical composition of 

AISI 304L. This material has high corrosion resistance with hardness (174 HB). The parts used in this study are 

rectangular (42x40x32 mm). The milling machine used is a universal CME FU 1/S type milling machine with a power of 

7 KW.  

 

Table 1. Chemical composition of 304L stainless steel (wt. %) 

C Mn Si P S Ni Cr N Co 

0,014 1,56 0,43 0,035 0,027 8,01 18,06 0,092 0,2 

 

Cutting Tool 

To properly perform this work, a 100 mm diameter "Sundvik" type R290-100 Q32-12L cutter was used, which 

includes five removable metal carbide inserts of type R290. 90-T308 PPM-WL with high wear resistance. The shape and 

geometry are shown in Figure 1.  
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Figure 1. Tool geometry 

 

Measurement Method 

Direct measurements of the arithmetic mean roughness Ra for all combinations of cutting parameters were obtained 

using a KR100 type roughness meter. The measured stroke is 6 mm for a gauge = 0.8 mm. To guarantee more accuracy, 

three measurements were taken on the same controlled surface. The final result is the average of these values. For the 

power measurement, a Cauvin Arnoux F205 wattmeter with jaws installed in the electrical cabinet of the machine was 

used.  

 

Milling Process 

In this work, two milling modes are used (down and up). The cutting parameters involved are the cutting speed (Vc 

(m/min)) feed rate (f (mm/min)) and cutting depth (ap (mm)). The levels of the different parameters are mentioned in 

Table 2. The machined surfaces are 42x40 mm2 in size, which makes it possible to work entirely in down milling or up 

milling (see Figure 2). In this study, we will assume that the influence of tool wear on the surface condition is negligible.  

 

 
Figure 2. Milling process 

 

Table 2. Factors and levels used in the experimental plan 

Symbol Factors 
Levels 

-1 0 +1 

A Vc (m/min) 35 88 141 

B f (mm/min) 56 80 112 

C ap(mm) 0,25 0,5 0,75 
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Design with Response Surface Methodology 

The response surface methodology (RSM) makes it possible to optimize one or more variables. Additionally, RSM 

can analyze multiple variables and factors at any time affecting one or more response variables with minimal resources 

[23,24]. This method was developed by Box and Draper (1987) [25]. It is used in this work to determine the relationship 

between the independent parameters of the machining process (Vc, f and ap) and the desired responses (Ra and Pc). The 

mathematical model used for RSM is as follows: 

 

𝑌 = 𝑏0 + ∑ 𝑏𝑖𝑋𝑖 + ∑ 𝑏𝑖𝑗𝑋𝑖𝑋𝑗
𝑘
𝑖𝑗 +𝑘

𝑖=0 ∑ 𝑏𝑖𝑖𝑋𝑖
2𝑘

𝑖=1 + 𝜀𝑖𝑗 (1) 

 

With Y, is the desired response (surface roughness and power consumption) and xi (1.2....., n) is the cutting parameters 

in milling. Where b0 is a RSM coefficient of each term, k is a number of independent variables, and ε is a residual error. 

 

RESULTS AND DISCUSSIONS 

Analysis of Variance (ANOVA) 

Analysis of variance or "ANOVA" is an analytical tool used to determine the importance of factors in an experiment 

by examining the relationship between a response variable and a factor [26]. The experimental results obtained are 

presented in Table 3. These results will be used to determine the mathematical models that express the relationship 

between the input parameters (Vc, f, ap) and the output responses (Ra and Pc). The numerical and graphical results 

presented in this article are obtained using Minitab 17.0 software and Design Expert 10. Tables 4 and 5 illustrate the 

results of the analysis of variance for surface roughness Ra and power consumption Pc for the two milling modes, and 

for a 95 % confidence level (the significance of the level is 5 %). 

 

Table 3. Experimental data for AISI 304L stainless steel 

Runs 

Coded 

Factors 

Responses 

Down milling Up milling 

A B C Ra(m) Pc(w) Ra(m) Pc(w) 

1 1 -1 0 0,23 374 0,31 362,5 

2 1 0 -1 0,08 380 0,26 357 

3 -1 -1 0 0,41 320 0,39 294 

4 -1 1 0 0,20 321,5 0,32 319,5 

5 0 0 0 0,15 359 0,26 333 

6 0 -1 -1 0,26 315 0,24 317,5 

7 1 0 1 0,13 469 0,29 415,5 

8 -1 0 1 0,12 334 0,45 322 

9 1 1 0 0,08 437 0,19 420 

10 0 0 0 0,13 356,5 0,27 329,5 

11 -1 0 -1 0,17 286,5 0,32 294 

12 0 1 -1 0,09 356,5 0,18 352 

13 0 0 0 0,15 359 0,27 336,5 

14 0 -1 1 0,32 348,5 0,40 332 

15 0 1 1 0,12 403 0,24 387,5 

 

Tables 4 and 5 include the values of degrees of freedom (DoF), the sum of quadratic deviations (SS), mean squares 

(Ms), statistical property (F) and percentage contribution (PC %) of each factor and also the different interactions between 

the cutting parameters. 

 

Down Milling: Surface Roughness and the Multiple Linear Regression Models 

One of the most important aspects of the machining process is the required surface quality [27]. Surface roughness, 

or the intended surface index of product quality, is a technical criterion for most mechanical items [27, 28]. For down 

milling and in Table 4(a), it is clear that the feed rate is the most important factor infecting the surface roughness Ra with 

a contribution of 47.20 %. This result is in good agreement with the work of [29, 30] and [6]. Aqib et al. [12] found that 

width of cut followed by feed rate are the most influential factors on surface quality. The second factor influencing 

roughness is the cutting speed, with a contribution of 14.58 %. The normal probability diagrams of the arithmetic 

roughness Ra are shown in Figure 3. The values revealed that the residues are on a straight line, which implies that the 
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errors are normally distributed [29]. Figure 4 illustrates the average effects of the input parameters on the roughness Ra. 

From this figure, we can see that the advance has a significant effect on the roughness. We can also see that as the cutting 

speed increases, so does the roughness. However, the cutting depth does not have a significant effect on surface roughness. 

 

Table 4. Analysis of variance ANOVA (Down milling) 

Source 
(a) Roughness Ra   (b) Power consumption Pc 

DoF SS MS F PC %   DoF SS MS F PC % 

Model 9 0,115916 0,012880 8,21 93,66   9 30455,7 3384,0 15,13 96,46 

Vc 1 0,018050 0,017285 11,02 14,58   1 19800,5 20408,6 91,26 62,71 

f 1 0,058415 0,066613 42,46 47,20   1 3105,6 3220,0 14,40 9,84 

ap 1 0,001013 0,000930 0,59 0,82   1 5859,0 5868,6 26,24 18,56 

Vc2 1 0,000021 0,000185 0,12 0,02   1 280,3 253,9 1,14 0,89 

f2 1 0,032910 0,031378 20,00 26,59   1 144,6 140,6 0,63 0,46 

ap2 1 0,002385 0,002385 1,52 1,93   1 3,1 3,1 0,01 0,01 

vc×f 1 0,000485 0,000485 0,31 0,39   1 812,1 812,1 3,63 2,57 

vc×ap 1 0,002500 0,002500 1,59 2,02   1 430,6 430,6 1,93 1,36 

ap×f 1 0,000137 0,000137 0,09 0,11   1 19,9 19,9 0,09 0,06 

Erreur 5 0,007844 0,001569  6,34   5 1118,2 223,6  3,54 

Total 14 0,123760   100   14 31573,9   100 

 

 

 

Figure 3. Normal probability plot Ra (Down milling) 

 

 

 

Figure 4. Main effects Plot for Ra (Down milling) 
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From the 3D graph of the roughness Ra for down milling in Figure 5, it can be seen that the roughness increases 

rapidly with the decrease in feed rate is really due to the increase in cutting forces with this milling mode at low feed 

rates. However, the cutting speed and cutting depth have a small influence on the surface roughness. The relationship 

between the input parameters and the output response is modeled by the quadratic regression formulation. The model of 

the arithmetic roughness Ra is given by Eq. (2): 

 

𝑅𝑎 = 1,329 − 0,00289 𝑉𝑐 − 0,02375 𝑓 + 0,354 𝑎𝑝 + 0,000003𝑉𝑐
2 + 0,000121 𝑓2 − 0,407 𝑎𝑝

2

+ 0,000007 𝑉𝑐  𝑓 + 0,00189 𝑉𝑐𝑎𝑝 − 0,00083 𝑓𝑎𝑝    
(2) 

 

(R2 = 93.66 %) 

From Figure 6, the experimental and predicted values of roughness Ra are very close with a 95% confidence interval. 

Therefore, it can be seen that the model based on the response surface method (RSM) gives satisfactory results.  

 

 

Figure 5. 3D plots for surface roughness Ra (Down milling) 

 

 

 

Figure 6. Comparison between the predicted and measured values for the surface roughness Ra (Down milling) 



K. Bousnina et al. │ Journal of Mechanical Engineering and Sciences │ Vol. 16, Issue 3 (2022) 

9099   journal.ump.edu.my/jmes ◄ 

Down Milling: Power Consumption and the Multiple Linear Regression Models 

For the power consumption Pc we can see in Table 4(b) that the most important factor influencing the power 

consumption is the cutting speed with a contribution of 62.71 %. As a result, we find the feed rate 18.72 % and the cutting 

depth 11.27 %. From Figure 7 of the normal probability, it is clear that the residues are on a straight line. Figure 8 

illustrates the average effects of the input parameters on the power consumed Pc. From this figure, we can see that cutting 

speed has a significant effect on roughness. It can also be seen that is the cutting speed increases, so does the power 

consumption. It can also be seen that is the cutting depth increases, so does the power consumption.  

 

 

Figure 7. Normal probability plot Pc (Down milling) 

 

 

 

Figure 8. Main effects Plot for Pc (Down milling) 

 

From the 3D graph of the power consumption Pc figure 9, we can see that the power increases rapidly with the increase 

in cutting speed and especially with greater cutting depths. This increase in power is due to the increase in cutting forces. 

The regression equation of the power consumed Pc given by Eq. (3): 

 

𝑃𝑐 = 250 − 0,756𝑉𝑐 + 1,07𝑓 − 𝑎𝑝 + 0,00295𝑉𝑐
2 − 0,0081𝑓2 + 15𝑎𝑝

2 + 0,00955𝑉𝑐  𝑓 + 0,783  𝑉𝑐𝑎𝑝

+ 0,32𝑓  𝑎𝑝 
(3) 

 

(R2 = 96.46 %) 

 

From Figure 10, the experimental values and predicted values of the power consumed Pc are very close with a 95 % 

confidence interval. Therefore, it can be seen that the model based on the response surface method (RSM) gives 

satisfactory results.  
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Figure 9. 3D plots for power consumption Pc (Down milling) 

 

 

 
Figure 10. Comparison between the predicted and measured values for power consumption Pc (Down milling) 

 

Up Milling: Surface Roughness and the Multiple Linear Regression Models 

Now for up milling and in Table 5(a), it is clear that the cutting speed is the most important factor infecting the surface 

roughness Ra with a contribution of 29.07 %. The second factor influencing the roughness is the feed rate with a 

contribution of 27.50 %. The cutting depth is the third factor with PC % is equal to 22.71 %. The normal probability 

diagram of the power consumed Pc is shown in Figure 11. The values revealed that the residues are on a straight line, 

which implies that the errors are normally distributed [29]. Figure 12 shows the average effects of the input parameters 

on the roughness Ra. From this figure, we can see that the three cutting parameters (Vc, f and ap), have a significant effect 

on the roughness Ra. We can also see that as the cutting speed increases, the roughness decreases. But from a higher 

speed ( >100m/min), the roughness increases slightly. This is due to the slight vibration of the machine. 
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Table 5. Analysis of variance ANOVA (Up milling) 

Source 
(a) Roughness Ra   (b) Power consumption Pc 

DoF SS MS F PC %   DoF SS MS F PC % 

Model 9 0,078595 0,008733 48,60 98,87   9 20431,9 2270,2 49,04 98,88 

Vc 1 0,023113 0,023629 131,51 29,07   1 13243,8 13488,8 291,38 64,09 

f 1 0,021862 0,021012 116,95 27,50   1 3868,8 3741,1 80,81 18,72 

ap 1 0,018050 0,016619 92,50 22,71   1 2329,0 2394,5 51,72 11,27 

Vc2 1 0,009336 0,009385 52,24 11,74   1 190,5 232,6 5,03 0,92 

f2 1 0,000251 0,000193 1,07 0,32   1 74,4 90,5 1,95 0,36 

ap2 1 0,000616 0,000616 3,43 0,77   1 141,4 141,4 3,05 0,68 

vc×f 1 0,000601 0,000601 3,35 0,76   1 267,8 267,8 5,78 1,30 

vc×ap 1 0,002500 0,002500 13,91 3,14   1 232,6 232,6 5,02 1,13 

ap×f 1 0,002267 0,002267 12,62 2,85   1 83,7 83,7 1,81 0,41 

Erreur 5 0,000898 0,000180  1,13   5 231,5 46,3  1,12 

Total 14 0,079493   100   14 20663,3   100,00 

 

 

 

Figure 11. Normal probability plot Ra (Up milling) 

 

 

 

Figure 12. Main effects Plot for Ra (Up milling) 
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Figure 13. 3D plots for surface roughness Ra (Up milling) 

 

 

 

Figure 14. Comparison between the predicted and measured values for the surface roughness Ra (Up milling) 

 

From the 3D graph of the roughness Ra for up milling in Figure 13, it can be seen that the roughness increases rapidly 

with the increase in feed rate and cutting speed but with a slight increase for the cutting depth. The model of the arithmetic 

roughness Ra is given by the regression Eq. (4): 

 

𝑅𝑎 = 0,2504 − 0,002556𝑉𝑐 + 0,00217𝑓 + 0,427 𝑎𝑝 + 0,000018𝑉𝑐
2 − 0,000009 𝑓2 + 0,207 𝑎𝑝

2

− 0,000008 𝑉𝑐  𝑓 − 0,001887 𝑉𝑐𝑎𝑝 − 0,003384𝑓  𝑎𝑝 
(4) 

 

(R2 = 98.87 %) 

 

From Figure 14, the experimental and predicted values of roughness Ra are very close with a 95 % confidence interval. 

Therefore, it can be seen that the model based on the response surface method (RSM) gives satisfactory results. 

 

Up Milling: Power Consumption and the Multiple Linear Regression Models 

Table 5(b) shows that the most important factor influencing power consumption is the cutting speed with a 

contribution of 64.09 %. From Figure 15 of the normal probability, it is clear that the residues are on a straight line. Figure 

16 illustrates the average effects of the input parameters on the power consumed Pc. From this figure, we can see that 

cutting speed has a significant effect on roughness. It can also be seen that the increase in cutting speed leads to an increase 

in power consumption.  
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Figure 15. Normal probability plot Pc (Up milling) 

 

 

 

Figure 16. Main effects Plot for power consumption Pc (Up milling) 

 

 

 

Figure 17. 3D plots for power consumption Pc (Up milling) 
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From the 3D graph of the power consumption Pc Figure 17, we can see that the power increases rapidly with the 

increase in cutting speed. The maximum power value is obtained with the three maximum values of cutting speed feed 

rate and cutting depth. 

The model of the arithmetic roughness Ra is given by the regression Eq. (5): 

 

𝑃𝑐 = 353,3 − 0,467𝑉𝑐 − 1,123𝑓 − 134,7𝑎𝑝 + 0,00283𝑉𝑐
2 + 0,00648 𝑓2 + 99,0𝑎𝑝

2 + 0,00549𝑉𝑐  𝑓

+ 0,575𝑉𝑐𝑎𝑝 + 0,650 𝑓  𝑎𝑝 
(5) 

 

(R2 = 98.88 %) 

 

From Figure 18, the experimental and predicted values of power consumption are very close with a 95 % confidence 

interval. Therefore, it can be seen that the model based on the response surface method (RSM) gives satisfactory results. 

 

 
Figure 18. Comparison between the predicted and measured values the power consumption Pc (Up milling) 

 

Discussions and Comparison between Down and Up Milling 

From Figure 19, it can be seen that the roughness Ra of the down milling is lower than that of the up milling. This 

result is consistent with many previous studies [31-33], which show that down milling produces a better surface quality 

than up milling because the chip section begins large at tool-workpiece contact and gradually decreases over time. In 

addition, in down mode, the tool passes several times over the same point on the machined surface. Indeed this 

phenomenon results in a cleaner surface finish than up milling. 

On the other hand, according to Figure 20, we can now see the opposite. That is to say, the power consumption Pc of 

up milling is lower than down milling, and this is because, in the up milling mode, the cutting forces are lower than those 

of down milling. Given that there is a direct relationship between power and cutting force in milling and that most 

researchers emphasize the effects of these milling modes on cutting force, we can say that our results are consistent with 

previous research. The studies of [20,22,34, 35], show that the cutting force in down milling is greater than that in up 

milling. Based on the consistency between power and cutting effort, we can say that our work is in good agreement with 

previous work. The results found are also consistent with the work of Tian et al. [21] when the cutting speed is less than 

1800 /min. Above this value, the results are opposed. In other words, the cutting force in counter milling becomes greater 

than that in climb milling. This result is because, with higher cutting speed, there is a birth of vibrations, which causes an 

increase in the wear of the tool and, consequently, an increase in the cutting forces. We are now faced with a situation of 

optimizing cutting parameters in both milling modes in order to minimize roughness and power consumption at the same 

time.  
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Figure 19. Comparison between down and up milling (surface roughness Ra)  

 

 
Figure 20. Comparison between down and up milling (power consumption Pc) 

 

Gray Relational Optimization 

Grey relational analysis is a method used to solve the complex interrelationships between different inputs and outputs. 

This method was proposed by Deng in 1989 [36]. By using Grey relational analysis in conjunction with the response 

surface method (RSM), the optimization of complex multi-response characteristics can be converted into the optimization 

of a single response characteristic.  

Step 1: Generation 

In Grey relational analysis, the first step is to normalize the experimental data in compliance with the type of 

performance response. In this work, the objective is to minimize the surface roughness Ra and the power consumption 

Pc of the milling processes. The standard data processing for Ra and Pc coordinating with a “smaller-the-better” criterion 

can be formulated as:  

 

𝑥𝑖(𝑘) =
𝑚𝑎𝑥(𝑦𝑖)(𝑘) − 𝑦𝑖(𝑘)

𝑚𝑎𝑥(𝑦𝑖)(𝑘) − 𝑚𝑖𝑛𝑦𝑖(𝑘)
 (6) 

 

i = 1, 2, 3, ..., m 

k = 1, 2, 3, ..., n 

Where, m is the number of experimental tests, in our case m = 15 and n is the number of responses in the milling 

process. In this work, are the surface roughness Ra and the power consumed Pc, therefore n = 2. 

 

Min 𝑦𝑖(𝑘) is the smallest value of𝑦𝑖(𝑘)for the kth response. Max (𝑦𝑖)(𝑘) is the largest value of𝑦𝑖(𝑘) for the kth 

response. 𝑥𝑖(𝑘) is the value after Grey relational generation. The normalized surface roughness values and power 

consumption calculated by Eq. (6) are given in the  Table 6.  
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Step 2: Coefficient 

The next step is to determine the gray relational coefficient, which indicates the correspondence between the desired 

and actual experimental results. The coefficient ξ_i (k) can be calculated as the follows: 

 

𝜉𝑖(𝑘) =
𝛥𝑚𝑖𝑛 +  𝜓𝛥𝑚𝑎𝑥

𝛥0𝑖(𝑘) +  𝜓𝛥𝑚𝑎𝑥

 (7) 

  

𝛥0𝑖(𝑘) = ‖𝑥𝑖(𝑘) − 𝑥𝑖(𝑘)‖ (8) 

  

𝛥𝑚𝑎𝑥 = max
∀𝑘

max
∀𝑗∈𝑖

‖𝑥𝑖(𝑘) − 𝑥𝑖(𝑘)‖ (9) 

  

𝛥𝑚𝑖𝑛 = min
∀𝑘

min
∀𝑗∈𝑖

‖𝑥𝑖(𝑘) − 𝑥𝑖(𝑘)‖ (10) 

 

ψ is the distinguishing coefficient (ψ ∈ [0, 1]) and is used to adjust the difference of the relational coefficient. In this 

study, ψ was taken as 0.5, and the grey relational coefficients calculated using Eq. (7) are given in Table 7.  

 

Step 3: Grade  

𝛾𝑖 =
1

𝑛
∑ 𝜉𝑖(𝑘)

𝑛

𝑘=1

 (11) 

 

Equation (11) defines the grade of the gray method. Where n is the number of performance characteristics (In this 

study, n is 2). The highest grey relational grade corresponds to the experimental value closest to the ideal normalized 

value.The Grey relational coefficients and Grey relational grade are presented in Table 6 calculated by Eq. (7) and (11), 

respectively. For down milling, experiment number 11 is the best combination of milling parameters for surface roughness 

and power consumption among the fifteen experiments (See Table 7).Experience number 12, on the other hand, is the 

best combination for up milling (See Table 7). 

 

Table 6. Normalized values and deviation sequences of responses 

Exp. 

number 

(i) 

Down milling  Up milling 

Normalized values 

of responses 

Deviation 

sequences Δ0i (k) 
 

Normalized values 

of responses 

Deviation sequences 

Δ0i (k) 

Ra Pc 
Ra Pc 

 Ra Pc 
Ra Pc 

smaller-the-better  smaller-the-better 

1 0,55 0,52 0,45 0,48  0,52 0,46 0,48 0,54 

2 1,00 0,49 0,00 0,51  0,70 0,50 0,30 0,50 

3 0,00 0,82 1,00 0,18  0,22 1,00 0,78 0,00 

4 0,64 0,81 0,36 0,19  0,48 0,80 0,52 0,20 

5 0,79 0,60 0,21 0,40  0,70 0,69 0,30 0,31 

6 0,45 0,84 0,55 0,16  0,78 0,81 0,22 0,19 

7 0,85 0,00 0,15 1,00  0,59 0,04 0,41 0,96 

8 0,88 0,74 0,12 0,26  0,00 0,78 1,00 0,22 

9 1,00 0,18 0,00 0,82  0,96 0,00 0,04 1,00 

10 0,85 0,62 0,15 0,38  0,67 0,72 0,33 0,28 

11 0,73 1,00 0,27 0,00  0,48 1,00 0,52 0,00 

12 0,97 0,62 0,03 0,38  1,00 0,54 0,00 0,46 

13 0,79 0,60 0,21 0,40  0,67 0,66 0,33 0,34 

14 0,27 0,66 0,73 0,34  0,19 0,70 0,81 0,30 

15 0,88 0,36 0,12 0,64  0,78 0,26 0,22 0,74 
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Table 7. Grey relational coefficient 

Exp. 

number (i) 

Down milling  Up milling 

Grey relational 

coefficient 
Grey 

relational 

grade 

Rank 
 

Grey relational 

coefficient 
Grey 

relational 

grade 

Rank 

Ra Pc  Ra Pc 

1 0,55 0,52 0,517 14  0,51 0,48 0,494 14 

2 1,00 0,49 0,747 3  0,63 0,50 0,564 10 

3 0,00 0,82 0,532 13  0,39 1,00 0,696 4 

4 0,64 0,81 0,651 7  0,49 0,71 0,601 8 

5 0,79 0,60 0,630 8  0,63 0,62 0,623 6 

6 0,45 0,84 0,620 11  0,69 0,73 0,710 3 

7 0,85 0,00 0,550 12  0,55 0,34 0,446 15 

8 0,88 0,74 0,731 4  0,33 0,69 0,513 12 

9 1,00 0,18 0,689 5  0,93 0,33 0,632 5 

10 0,85 0,62 0,667 6  0,60 0,64 0,620 7 

11 0,73 1,00 0,824 1  0,49 1,00 0,745 2 

12 0,97 0,62 0,754 2  1,00 0,52 0,760 1 

13 0,79 0,60 0,630 8  0,60 0,60 0,599 9 

14 0,27 0,66 0,501 15  0,38 0,62 0,502 13 

15 0,88 0,36 0,622 10  0,69 0,40 0,547 11 

 

So we can see from Table 7 that we can minimize the cutting power consumed by 39 % for down machining and 16 

% for up machining to the maximum value. On the other hand, the quality of the machined surface can be improved by 

58.5 % for down milling and by 60 % for up milling. However, for the same working conditions, the use of down milling 

allows us to benefit from the energy consumed and therefore the manufacturing cost rather than up machining while 

maintaining a higher quality of the part to be machined. 

 

CONCLUSIONS 

Intending to decrease energy consumption in machining, one of the most essential energy-saving measures is the 

selection of suitable cutting settings. In this work, the effects of cutting parameters (Vc, f and ap) on surface roughness 

and power consumption during AISI 304 L down and up milling, were studied using the ANOVA experimental method. 

Multi-response optimization of the milling process for both down and up modes have been used to obtain an optimal 

parametric combination that provides surface roughness and minimum power consumption. The foremost conclusions 

that can be drawn are as follows:  

1.  According to the analysis of the variance of the down milling, the feed rate is the most influential factor on the 

surface roughness Ra with a contribution of 47.20 %, and the cutting speed is still the most influential factor on 

the power consumption Pc with a contribution of 62.71 %. 

2.  According to the statistical analysis based on ANOVA of up milling, cutting speed is the most important factor 

influencing surface roughness and power consumption with a contribution of 29.07 % and 64.09 % respectively. 

3.  The reduced models obtained for Ra and Pc using RSM quadratic modeling, with correlation coefficients R2 of 

93.66 to 96.46 % for down milling and 98.87 to 98.88 % for up milling, respectively, showed strong correlations 

with the input data. 

4.  Multi-objective optimization results of down milling were obtained using Grey relational analysis. It was found 

that the best combination values to minimize surface roughness and power consumption were 35 m/min cutting 

speed, 80 mm/min feed rate and 0.25 mm cutting depth. 

5.  Multi-objective optimization results of up milling were obtained using Grey relational analysis. It was found that 

the best combination values to minimize surface roughness and power consumption were 88 m/min cutting 

speed, 112 mm/min feed rate and 0.25 mm cutting depth. 

6.  It was also shown that when compared to the maximum value, cutting power may be lowered by 39% for down 

milling and 16% for up milling. The quality of the machined surface, on the other hand, can be improved by up 

to 60% when down milling and 58.5 percent when up milling. 

It can also be concluded that down milling gives a more finished surface than up milling but with a slight increase in 

power consumption. The following work will be devoted to optimizing the experimental results for energy consumption, 

machining cost, and aeronautical part quality using the artificial neural network. 
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