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INTRODUCTION 

Annular finned tube heat exchangers are designed according to their intended use and rate of heat transfer. While 

designing the annular fin tube heat exchanger, several important parameters must be taken into account, such as volume 

of the equipment, pressure drop, heat transfer requirement, mass flow rate and thermal efficiency of heat exchanger. 

Among all these parameters, pressure drop across a finned tube surface is fatal for many industrial applications because 

fluid must be pumped across a finned tube arrangement [1–5]. The flow behaviour across a different fin-tube arrangement 

has been studied by many researchers. 

Thermal and hydraulic characteristics across a finned tube vary with variation in flow characteristics. Hu and Jacobi 

[6] and Watel et al. [7] examined the effect of variation in Reynolds number on thermal characteristics across a finned 

tube surface. Hu and Jacobi [6] did experiments to analyse the flow characteristics across a single row annular fin-tube 

heat exchanger. The flow patterns and variation in coefficient of heat transfer near to tube surface were observed and the 

fin efficiency was calculated for 13700 < Re < 49800. Lower fin efficiency has been reported when it is calculated from 

the results of mass transfer compared to when it is calculated by taking a constant coefficient of heat transfer across a 

surface. 

The fin efficiency is affected due to variation in local heat transfer characteristics across a tube surface [7–9]. Watel 

et al. [7] analysed the temperature variation on fin surface to examine the variation in local heat transfer characteristics 

and fin efficiency for 2550 < Re < 42000. It has been observed that the influence of fin spacing on overall heat transfer 

rate becomes weak when the fin spacing exceeds about twice the thickness of the boundary layer at the edge of the tail of 

the fin. Hofmann [10] also analysed two different geometry of fin numerically. Heat transfer and pressure drop difference 

were calculated at 4500 to 35000 range of Reynolds number. It was concluded that the rate of heat transfer and pressure 

drop difference increases with increase in Reynolds number. Scuz [11] also investigated the variation in thermal and 

hydraulic characteristics. Boundary layer over a leading edge was captured experimentally and the effect of pressure 

gradient in stagnant zone was analysed. Higher heat transfer rate was reported in stagnant zone in upstream of cylinder. 

Kundu and Das [12–14] carried out investigations to analyse the effect of change in fin eccentricity and other geometrical 

parameters on heat transfer performance. Semi analytical method was used to analyse the performance of elliptical fin 

[13]. Relative assessment was carried out for different axis ratio of fin. Efficiency and effectiveness of fin were calculated 

by predicting fin volume and rate of heat transfer, which is unreasonable. Webb [15] reviewed many methods for 

enhancement of heat transfer. He concluded that enhanced heat transfer rate can also be achieved by escalating the 

turbulence in free stream, but at a disadvantageous cost in terms of the higher operating pressure. Moore et al. [16] 

performed a set of experiment to examine the effect of turbulence on heat transfer characteristics in case of single row 

fin-tube heat exchanger. Experimental investigations were carried out for 25000 < Re < 250000. Increase in Nusselt 

number was reported due to increase in turbulence intensity. Huisseune et al. [17] experimentally investigated the flow 

physics across a single row fin-tube heat exchanger. Correlations were developed for coefficient of heat transfer and 

friction factor. Higher rate of heat transfer achieved using concept of turbulence. 

Benmachiche et al. [18] studied the flow behaviour across a finned tube heat exchanger. The eccentricity of fin over 

a circular tube was analysed for 5500 to 29700 Reynolds number range. The results obtained from an experimental 

investigation were verified with numerical one. It was observed that increasing value of Reynolds number increases the 

ABSTRACT – Numerical investigations are carried out to determine the effect of change in 
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changed by varying horizontal diameter of fin. Three different cases of annular fin are investigated 
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overall rate of heat transfer but decreases the efficiency of annular fin. Mon and Gross [19] carried out 3D numerical 

investigations to observe the effect of fin spacing on heat and flow characteristics across a finned tube heat exchanger. 

Turbulence was captured using k-ε RNG model. Effect of change in Reynolds number and fin pitch on Nusselt number 

was investigated. Improvement in heat transfer coefficient and pressure penalty was reported with de-crease in fin spacing 

and increase in Reynolds number in case of staggered and inline arrangement of annular fin tube heat exchanger. Chen 

and Hsu [20] numerically analysed the average heat transfer coefficient across a finned tube heat exchanger. 

Investigations were carried out for 0.005 m to 0.018 m fin spacing and 1550 to 7760 Reynolds number. It was analysed 

that the average heat transfer coefficient enhances with increase in Reynolds number and decrease in spacing between 

two fins.  

Other design parameters like fin spacing, fin height and fin thickness also affect the overall performance of heat 

exchanger [21–23]. Hofmann [10] and Bilrigen et al. [24] carried out numerical investigation to analyse the effect of fin 

spacing, fin height, fin thickness and fin material on heat transfer characteristics and pressure penalty. Bilrigen et al. [24] 

did relative assessment for 10000 < Re < 45000. For Numerical study turbulence was modelled using k-ε RNG model.  

The heat transfer rate and pressure penalty increase with increase in Reynolds number and decrease in spacing between 

two fins. The negligible effect on heat transfer characteristics was captured due to variation in fin thickness.    

The superior performance of circular fin has been reported by many researchers. However, the higher pressure penalty 

across a circular finned tube is an enormous problem in the thermal design of heat exchangers, it is still needed to verify 

the effect of change in geometrical parameters of annular fin on heat transfer characteristics. Hence, the goal of the present 

numerical investigation is to improve the performance of cross flow annular fin-tube heat exchanger by reducing a 

pressure penalty across a tube bank by reducing horizontal diameter of fin.  

 

NUMERICAL FORMULATION AND MODELING 

Modeling in Flow Domain 

A 3-D numerical investigations are carried out to investigate the effect of change in fin shape on heat transfer and 

flow characteristics of fin-tube heat exchanger. Figure 1 represents the top view of single tube finned heat exchanger. 

Tube of diameter 0.025 m and length of 0.003 m is considered for present study. The enlarge view of computational 

domain is shown in Figure 2. Top boundary has 6D distance from the center (C) of the tube. Upstream and downstream 

boundaries are at 5D and 10D distance from the center of the tube respectively. Relative assessment is carried out to 

investigate the effect of change in design parameters of annular fin on heat transfer and pressure penalty. In first case, 

thermal and hydraulic characteristics are studied for a 0.052 m diameter annular fin. Fin base is maintained at 373 K and 

performance of fin is compared with that of smooth surface tube. In second and third case, the effect of change in fin 

diameter ratio (X) on thermal and hydraulic characteristics is investigated for different Reynolds number. Fin diameter 

ratio, X, is defined as ratio of horizontal fin diameter (D01) to vertical fin diameter (D02). The schematic front view of 

different geometrical conditions of annular fin are shown in Figure 3. Table 1 indicates value of D01, D02, and X for 

respective cases.  

 

 
Figure 1. Top view of single tube finned heat exchanger  

 

 

Computational 

Domain 
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Figure 2. Flow domain for numerical investigation  

 

 

 

Figure 3. Front view of different geometrical cases of annular fin 

 

Table 1. Different geometrical cases of annular fin 

Cases 
Horizontal Diameter of 

fin (D01) 

Vertical Diameter of 

fin (D02) 

X 

(D01/D02) 

1 0.052 m 0.052 m 1 

2 0.044 m 0.052 m 0.85 

3 0.034 m 0.052 m 0.65 

 

Governing Equations 

The flow behaviour and temperature variation in a flow domain can be numerically predicted by solving governing 

equations based on theory of mass, momentum and energy conservation. The mass conservation equation (equation of 

continuity) for steady, incompressible fluid in three dimensional form is represented as:  

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
=  0 (1) 

 

For 3-D, steady incompressible flow the momentum equations are: 

Equation for x - momentum,  
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Equation for y - momentum,  
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Equation for z - momentum,  
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where, υ = kinematic viscosity, p =  pressure and u, v, w  are the mean velocity component in x, y and z direction 

respectively.  

D02 

D01 
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The variation thermal characteristics in surrounding of tube surface is encapsulated by solving energy equation, and 

the energy equations comes from the first law of thermodynamics.  

 

(𝜌𝐶𝑝)(𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇
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𝜕𝑇
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𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +
𝜕2𝑇

𝜕𝑧2  ) (5) 

 

where  kf = k+ktb, 𝜌 = Density of fluid, Cp = Specific heat. 

 

Turbulent kinetic energy and turbulance dissipation rate are the essential parameters to capture turbulence in a flow 

rigime. Following equations are used to solve them. 

Equation for turbulent kinetic energy (k) :  
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Equation for turbulence dissipation rate (ω) :  
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where   β
1
, β

2
 and A are SST model constants, S is absolute value of shear strain rate and 𝜎 is SST diffusion coefficient.  

 

Boundary Condition 

      Numerical investigations are carried out to find the optimum size and shape of annular fin geometry. Air is considered 

as a working fluid. Air enters from upstream boundary of cylinder at uniform velocity and temperature of 300 K with 

turbulence intensity of 5%. Velocity component in Y and Z direction is considered to be zero. Cylinder and fin surface 

are considered as a solid region in computational domain. No slip boundary condition is applied on cylinder and fin 

surfaces. Heat is transferred from cylinder to fin through conduction mode and from fin to air through convection mode. 

Cylinder surface is maintained at constant temperature 373 K. Pressure outlet boundary condition is assigned at domain 

outlet.  

 

Meshing and Flow Modeling 

In order to capture a complexity of current flow physics, the flow domain is split into number of subdomains. The 

governing equations are solved for each element of the entire domain. As shown in Figure 4, structural grid is generated 

for solving the thermal and hydraulic characteristics across a finned tube surface. To capture the accurate flow 

characteristics near to tube surface, fine grid is generated. The grid density varies in a flow domain using successive ratio 

as shown in Figure 4.  

 

 

Figure 4. Meshing in flow domain 

 

Solution of mass, momentum and energy is essential to analyse the actual flow physics. Fluent is used as a solver to 

analyse thermal and hydraulic structure near to tube surface. In present numerical investigation, k-ω SST closer model is 

used for turbulence [25]. k-ω SST model includes two additional transport equations to represent turbulent properties of 

flow to account convection and diffusion effects of turbulent energy. It is enough capable to capture turbulence in region 

with large normal strain; stagnation region and region with strong acceleration. SIMPLEC algorithm is adopted for 

coupling of pressure and velocity. QUICK scheme used to discretise governing equations. The criteria for convergence 

of mass and momentum conservation equations are set to 10-4 and 10-6 for energy conservation equation.  
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RESULTS  AND DISCUSSION 

Grid Independence Study 

Grid generation is an indispensable part of numerical investigation. A grid independence study is essential to analyse 

the size of grid for computational that does not allow the solution to change substantially. To determine the optimum 

number of elements, relative error in average Nusselt number is evaluated for four different grid sizes. Table 2 represents 

the number of elements used for each case in grid independence study. The effect of change in grid size on average 

Nusselt number for the case of annular fin at 7065 Reynolds number is shown in Figure 5. 

 

Table 2. Details of grids used for grid independence study 

Grid Types Number of Elements 

Grid A 1320200 

Grid B 1510000 

Grid C 1600344 

Grid D 1684890 

 

It is observed that Nusselt number varies substantially for Grid A and Grid B but it is almost comparable for Grid C 

and Grid D. It is concluded that the change in grid size beyond Grid C doesn’t affect results significantly. Thus Grid C is 

considered as grid independent mesh.  

 

 

Figure 5. Grid independence study 

 

Apart from that, the wall y+ is one of the suitable parameters to determine the precision in the selection of the number 

of elements, when the problem is associated with convection phenomena. Turbulent flows are significantly affected by 

the presence of a wall. Therefore, mesh accuracy is essential to predict the nature of wall bounded turbulent flow. 

Therefore, the grid near the wall surface is generated in such a way so that wall y+ is maintained within 1.03 to 0.05 in 

case of fin diameter ratio 1 (X=1), 1.074 to 0.06 in case of X = 0.85 and 1.04 to 0.055 in case of X = 0.65 for the range 

of Reynolds number considered in present work.  

 

Validation 

Numerical investigations are carried out to investigate the effect of change in design parameters of fin surface on 

thermal and hydraulic characteristics. The overall heat transfer between surface of fin and air is evaluated from numerical 

simulation.  

 
Figure 6. Validation of work 
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The average value of coefficient of heat transfer (havg) is calculated as,  

 

ℎavg =
𝑄

((𝐴𝑡 + 𝜂𝐴𝑓)𝜃mean )
 (8) 

  

where,                                                  𝜃mean =
(𝑇inlet-Toutlet) 

ln(
(𝑇inlet-Twall)

(𝑇outlet-Twall )
⁄ )

 (9) 

 

Where, Q is heat transfer from surface of fin. The difference in average heat transfer coefficient on surface of tube and 

fin is considered to be marginal. 

Average Nusselt number for case of diameter ratio X = 1 of an annular fin-tube is investigated numerically and 

compared with experimental work done by Gianolio and Cuti [26]. Figure 6 represents the comparison of numerically 

calculated average Nusselt number (Nuavg) with that obtained from experiments [26]. Numerical study over predicts the 

Nusselt number. Numerically investigated Nusselt number is deviating 3% from experimentally investigated Nusselt 

number at low Reynolds number.  Deviation in result increases with increase in Reynolds number. There is a deviation 

of 10% in numerically calculated Nusselt number as compared to that of the experimental one at 12965 Reynolds number. 

It is difficult to measure the temperature distribution on surface of fin without disturbing the flow characteristics through 

experiments. Thermocouples create disturbance in flow field and change the heat transfer characteristics within fin surface 

as well as over a fin surface. This may be reason for deviation between experimental and numerical results.  

 

Overall Flow Behaviour  

  

D01/D02 = 1.00 

 

  

D01/D02 = 0.85 
  

  

D01/D02 = 0.65 

  

Re = 2590 Re = 12965 

 
Velocity (m/s) 

Figure 7. Velocity contours with streamline plot 

 

The effect of change in fin design on flow characteristics near tube surface is observed for 2500 < Re < 13000. For 

visualization of flow behaviour, velocity contours on x-y plane at 2590 and 12965 Reynolds number are plotted and 

shown in Figure 7. As shown in Figure 7, cylinder offers obstruction to flow. The fluid stream has to adjust its flow 

pattern according to shape of obstruction. Near tube surface in upstream, fluid stream cannot change its direction due to 
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sudden obstruction. Hence there is formation of stagnant zone in upstream. In downstream fluid particles detach from the 

cylinder surface. Due to this separation and negative velocity of fluid particles, wake region is formed. The region of 

negative velocity and stagnant point in flow region varies with fluid freestream velocity and shape of the fin.     

As shown in Figure 7, annular fin with diameter ratio of 1 offers longer wake zone at reported Reynolds number as 

compared to other two cases of annular fin. As the value of approaching free stream velocity increases, the length of wake 

zone decreases in particular fin-tube case. The variation in wake zone at downstream and stagnant zone at upstream affect 

the heat transfer form tube and fin surface to surrounding. Figure 8 represents the temperature contours on x-y plane for 

different fin shape at 2590 and 12965 Reynolds number to understand the heat transfer phenomena in effective manner. 

As shown in Figure 8, air enters in the domain at 300 K and strikes to tube surface, which is maintained at 373 K. The 

variation in air temperature due to convection is easily identified near the tube surface in all the reported cases. 

 

  
D01/D02 = 1.00 

  

  
D01/D02 = 0.85 

  

  
D01/D02 = 0.65 

 

Re = 2590 Re = 12965 

 
Temperature (K) 

Figure 8. Temperature contours for flow domain  

 

Stagnant and separated zones near to tube surface are captured in Figure 7. Due to wake, temperature of air in separated 

region increases. Stronger separated zone is captured in case of annular fin shape and because of that lower temperature 

difference between air and tube surface is captured in that region in Figure 8. Intensity of wake zone decreases with 

decrease in horizontal radius of annular fin at particular Reynolds number and that reduces the length of high temperature 

zone near to the tube surface. Heat transfer enhances with increase in temperature difference between fin surface and 

surrounding and uniformity in temperature distribution on fin surface is essential for this.  

Figure 8 represents the temperature contours on x-y plane for different fin shape at 2590 and 12965 Reynolds number 

to understand the heat transfer phenomena in effective manner. As shown in figure 8, air enters in the domain at 300 K 

and strikes to tube surface, which is maintained at 373 K. The variation in air temperature due to convection is easily 

identified near the tube surface in all the reported cases. Stagnant and wake zones near to tube surface are captured in 

Figure 7. Due to separation phenomena, temperature of air in that region increases. Stronger wake zone is captured in 

case of annular fin shape and because of that lower temperature difference between air and tube surface is captured in 

that region in Figure 8. Intensity of wake zone decreases with decrease in horizontal radius of annular fin at particular 

Reynolds number and that reduces the length of high temperature zone near to the tube surface. Heat transfer enhances 

with increase in temperature difference between fin surface and surrounding and uniformity in temperature distribution 

on fin surface is essential for this. 
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Figure 9 represents the temperature variation on fin surface at 2590 and 12965 Reynolds number for different 

geometrical cases. As shown in Figure 9, maximum temperature on surface of fin is captured at lower base surface in all 

the cases, which is connected to surface of tube. Temperature on surface of fin decreases with increase in fin radius. The 

difference in temperature gradient increases as the diameter ratio increases from 0.65 to 1.0. In case of 1.0 diameter ratio, 

temperature on tip of fin is much lower as compared to other geometrical cases. Due to lower temperature on tip of fin, 

temperature difference between surface of fin and air decreases, which also decreases the ability of heat transfer from 

surface of tube to surrounding. Similar observation was also made by Benmachiche et al [18] in their experimental work. 

In case of 0.85 fin diameter ratio, temperature on tip of fin is higher and it is maximum in case of 0.65 fin diameter ratio. 

The higher value of temperature on fin tip increases the temperature gradient and enhances the rate of heat transfer 

between fin surface and atmosphere. 

 

  

D01/D02 = 1.00 

  

  

D01/D02 = 0.85 

 

 

 

D01/D02 = 0.65 

 

Re = 2590 Re = 12965 

  
Temperature (K) 

     Figure 9. Temperature contours on fin surface  

 

Calculation of Heat Transfer Coefficient and Pressure Penalty  

The effect of change in flow behaviour near tube surface on heat transfer characteristics is analysed for 2500 < Re < 

13000. Figure 10 represents the variation in average Nusselt number over fin surface due to change in fin shape and 

change in Reynolds number. Comparison of average Nusselt number for different diameter ratio at same Reynolds number 

indicates that average Nusselt number decreases with increase in horizontal radius of fin. Highest value of average Nusselt 

number in the range of Reynolds number investigated is achieved with diameter ratio of 0.65 at particular Reynolds 

number. Average Nusselt number decreases by 13.5% and 36.2% when fin diameter ratio is increased to 0.85 and 1.00 at 

2590 Reynolds number. Same trend of change in Nusselt number is observed for higher Reynolds number. Nusselt 

number decreases by 4% and 34% when annular fin diameter ratio is increased to 0.85 and 1.00 at 12965 Reynolds 

number.   

 

Figure 10. Variation in Nusselt number 
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Reduction in Nusselt number with increase in diameter ration at same Re can be attributed to change in flow regime 

in downstream of fin. With increase in diameter ratio, the length and width of wake zone in downstream increase. The 

same can be observed by comparing stream line pattern and velocity contours presented in Figure 7.  This larger shape of 

wake zone acts as a barrier for heat transfer. Also, larger shape of wake will bring more heat from main stream flow back 

to the source and this in turn will reduce the temperature gradient near fin surface in downstream. This can be observed 

by comparing temperature distribution in downstream near fin surface in wake zone as shown in Figure 8. Thus, 

enhancement in shape of wake region with increase in diameter ratio reduces the heat transfer rate from source which is 

present in upstream of wake zone. 

Operating pressure is one of the important parameters in designing process of annular fin tube heat exchanger. 

Obstruction in flow always require additional pressure penalty to overcome flow obstruction for maintaining constant 

fluid flow rate. Figure 11 represents the Euler number (dp/(ρV2) for different diameter ratio of fin Reynolds number.  

Pressure penalty depends on shape, size and intensity of wake zone. The most intense wake zone is captured in case of 

annular fin with diameter ratio of 1.00 as shown in Figure 7. Due to that highly intense wake zone, highest pressure 

penalty is predicted in case of annular fin with diameter ratio of 1.00.  

 

 

Figure 11. Variation in pressure penalty 

 

Euler number decreases by 27% and 10% in case of annular fin with diameter ratio of 0.65 and 0.85 as compared to 

that of annular fin with diameter ratio of 1.00 at 2590 Reynolds number respectively. Same trend of change in Pressure 

penalty is observed for higher Reynolds number. Euler number decreases by 27% and 11% in case of annular fin with 

diameter ratio of 0.65 and 0.85 as compared to that of annular fin with diameter ratio of 1.00 at 12965 Reynolds number 

respectively. 

Calculation of performance index is essential for evaluating the overall performance of heat exchangers. Performance 

index is (Pi) defined as the ratio of heat flux (q) to pumping power for unit cross-sectional area for a particular case. 

Figure 12 represent the ratio of performance index (Pi/P*i) for different fin design, where P*i is the performance index 

calculated for annular finned tube with diameter ratio of 1.00 at particular Reynolds. Higher heat transfer rate is reported 

in case of annular fin with diameter ratio of 1.00 but the overall performance decreases due to high operating pressure 

penalty. 

As shown in Figure 12, Performance index increases by 85%, and 37% in case of annular fin with diameter ratio of 

0.65 and 0.85 respectively as compared to that of annular fin with diameter ratio of 1.00 at 2590 Reynolds number. The 

trend of performance index is almost similar at higher freestream velocity. It increases by 88%, and 41% in case of annular 

fin with diameter ratio of 0.65 and 0.85 respectively as compared to that of annular fin with diameter ratio of 1.00 at 

12965 Reynolds number. The overall performance of annular fin with diameter ratio of 0.65 is overwhelming for reported 

Reynolds number range.  

 

 

Figure 12. Variation in performance index 
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CONCLUSION 

Numerical investigations are carried out to predict effect of annular fin shapes on heat transfer and pressure penalty. 

Three different fin diameter ratio; 1.00, 0.85 and 0.65 are investigated for 2500 to 13000 Reynolds number. Based on 

present study major conclusions are drawn as follows:  

• Horizontal diameter of annular fin affects the shape and size of wake zone formed in downstream of fin and tube 

surface. Wake zone act as heat trap for the heat source present in upstream and offers resistance to heat transfer.  

Optimum level of wake zone is observed at diameter ratio 0.65 for 2500 < Re < 13000. 

• Annular fin with horizontal diameter ratio 0.65 is performing better in terms of pressure penalty and heat flux for 

2500< Re <13000. Highest Nusselt number is reported in case of annular fin with diameter ratio of 0.65. Optimum 

pressure penalty is observed in case of annular fin with diameter ratio of 0.65. 

• Optimum value of performance index is achieved at diameter ratio 0.65 for 2500< Re <13000. Performance index 

increases by 37%, and 85% in case of annular fin with diameter ratio of 0.85 and 0.65 as compared to that of 

annular fin with diameter ratio of 1.00 at 2590 Reynolds number respectively. It increases by 41%, and 88% in 

case of annular fin with diameter ratio of 0.85 and 0.65 as compared to that of annular fin with diameter ratio of 

1.00 at 12965 Reynolds number respectively.  
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